

Электронная версия доступна на сайте www.fmm.ru/Новые данные о минералах Минералогический музей имени А.Е. Ферсмана РАН

НДМ

Новые данные о минералах, том 52, вып. 4 (2018), 102-109

### Кадмиевая минерализация в щелочном массиве Дараи-Пиёз (Таджикистан)

Карпенко В.Ю.1, Паутов Л.А.1, Агаханов А.А.1, Сийдра О.И.2

<sup>1</sup>Минералогический музей им. А.Е. Ферсмана РАН, Москва, <u>mineralab@mail.ru</u> <sup>2</sup>Институт наук о Земле, Санкт-Петербургский государственный университет

### Аннотация

Впервые в щелочном массиве Дараи-Пиёз (Таджикистан) встречены собственные минералы кадмия – гринокит CdS (гекс. с.) и отавит CdCO<sub>3</sub>, а также получены дополнительные данные о содержании Cd в сфалерите (от 0.12 до 3.65 мас. %). Гринокит (с 3.3–3.8 Zn, мас.%) находится в виде зерен до 0.4 мм в гнездах галенита из эгирин-кварц-полевошпатовой породы в ассоциации с полилитионитом, цезий-куплетскитом, амфиболом серии рибекит–арфведсонит, туркестанитом, англезитом. Параметры гексагональной ячейки a = 4.171(2), c = 6.772(1) Å, V = 102.1(1) Å<sup>3</sup>. Отавит встречен на контакте галенитового прожилка в гранулированном кварце в виде рыхлых агрегатов (~0.5 x 0.5 мм), по которым развивается Cd-содержащий церуссит (CdO 2.3 мас.%). Состав отавита неоднороден (мол.%): 77–87 CdCO<sub>3</sub>, 4–19 CaCO<sub>3</sub>, 4–9 PbCO<sub>3</sub>, 1–5 ZnCO<sub>3</sub>. Для диагностики минералов использованы рентгеновский метод (фотометод), микрозондовый анализ. Для гринокита приведен спектр отражения. Обсуждаются возможные механизмы разделения Zn и Cd. Вероятно, это первый случай находок собственно кадмиевых минералов в щелочных породах.

Ключевые слова: кадмий, гринокит, отавит, церуссит кадмийсодержащий, галенит, сфалерит кадмийсодержащий, щелочной массив Дараи-Пиёз.

### Введение

При изучении образцов, собранных на морене Дараи-Пиёз, частично перекрывающей одноименный щелочной массив на южном склоне Алайского хребта (Гаджикистан), в эгирин-кварц-полевошпатовых пегматоидных породах нами встречена кадмиевая минерализация, представленная гипогенным гринокитом, вторичными отавитом и Cd-содержащим церусситом, а также Cd-содержащим сфалеритом (до 3.65 мас.% Cd, табл. 1).

Кадмий относится к рассеянным элементам, его кларк в земной коре составляет, по данным разных исследователей, от 0.08 до 0.19 ppm (Геохимия... 1964; Thornton, 1986; Геологический справочник... 1989; Rudnick, Gao, 2003). Количество собственных минералов кадмия невелико – по состоянию на декабрь 2018 года их насчитывается 29 видов, среди которых, пожалуй, самым распространенным является гринокит. Подавляющее большинство находок последнего связано с рудными, в первую очередь полиметаллическими (Pb-Zn-(Sn), Au-Ag-Te, Cu) месторождениями, генезис его может быть как гипогенным, так и гипергенным (Геохимия...1964; Anthony et al., 1990; Бадалов, 1991; Thombros et al., 2005). Ограниченность числа минералов кадмия обусловлена геохимической близостью его к цинку и рассеянием в сфалерите, среднее содержание в котором, по разным данным, составляет от 2000 до 6000 ppm Cd (Геохимия...1964; Иванов, 1966; Thornton, 1986; Геологический справочник... 1989; Schwartz, 2000). Кадмий типичен для многих рудных месторождений, концентрируясь преимущественно в сфалерите, в меньшей степени - в блеклых рудах (Иванов, 1966; Бадалов, 1991; Thombros et al., 2005 и мн. др.); отмечены высокие содержания кадмия в углеродисто-кремнистых сланцах, фосфоритах, где он концентрируется не только в сфалерите, но и в органическом веществе (Юшкин, 1980; Юдович и др., 1998; Ильин, 2002, 2008). Сульфидная кадмиевая минерализация характерна для вулканических эксгаляций (Krivovichev et al., 2002; Chaplygin et al., 2005; Okrugin et al., 2015 и др.). Но для изверженных пород кадмий не характерен, в 102

большинстве случаев содержания Cd в них находятся на уровне кларковых (ppm): 0.05-0.14 в ультраосновных породах, 0.15 в средних, 0.09-0.12 в кислых (Иванов, 1966; Геологический справочник...1989; Schwarz, 2000). Для гранитных пегматитов указываются в среднем содержания не более 0.5 ppm, хотя имеются отдельные случаи избирательного концентрирования Cd в редкометальных пегматитах: это сподуменовые пегматиты Танко (Берник-Лейк, Канада), поля амблигонитовых пегматитов близ Кейстоуна (Ю. Дакота, США), где наряду со сфалеритом кадмий концентрируется в хаулиите CdS (куб. с.) и минералах группы станнина, вплоть до образования Cd-аналога станнина черниита Cu<sub>2</sub>CdSnS<sub>4</sub> (Kissin et al., 1978; Černy, Harris, 1978; Černy et al., 1985, 2001). До 0.15 ppm Cd указывается в щелочных гранитоидах плато Джос (Нигерия) (Butler, Thompson, 1967). Невелики содержания Cd и в щелочных породах (средний кларк 0.07 ррт; в щелочных сиенитах – 0.13 ррт). Так, в породах Илимаусакского щелочного массива (Гренландия) содержание кадмия составляет около 0.15 ррт, возрастая до 2 ррт в породах, обогащенных цинком (Bailey et al., 2001). Главным концентратором кадмия здесь выступает сфалерит, содержание в котором составляет от 20 до 1500 ppm Cd (Kullerud, 1953; Karup-Møller, 1978). Для щелочных пород других массивов (Ивигтут, Гренландия; Хибины, Россия; Лангезундфиорд, Норвегия) приводятся содержания Cd в сфалерите от 500 до 2000 ррт (Минералы Хибинских....1937; Kullerud, 1953; Иванов, 1966). С массива Дараи-Пиёз А.Р. Файзиев и В.Д. Дусматов (1973) описали сфалерит с содержаниями Cd 0.3-0.4 мас.%. Но ни гринокит, ни отавит, равно как и другие минералы кадмия, на Дараи-Пиёзе до настоящего времени не отмечались. Не исключено, что обнаружение этих минералов в Дараи-Пиёзском массиве является первым случаем находок собственно кадмиевых минералов в щелочных породах.

Предварительный просмотр полированных препаратов осуществлялся на сканирующем электронном микроскопе CamScan-4D, а количественный анализ - на электронно-зондовом микроанализаторе Superprobe JCXA-733 фирмы JEOL. В обоих случаях изучение проводилось с использованием энергодисперсионных Si(Li)-детекторов при ускоряющем напряжении 20 кВ и токе зонда 1 нА с помощью системы анализа INCA Oxford. В качестве стандартов использовались диопсид USNM 117733 (CaKa), ZnS (ZnKa), CdS (SKa, CdLa), PbTiO<sub>3</sub> (PbLa), Fe<sub>2</sub>O<sub>3</sub> (FeKa). Анализ сфалерита выполнялся также и на волно-дисперсионных спектрометрах на электронно-зондовом микроанализаторе Superprobe JCXA-733 при следующих условиях: ускоряющее напряжение 20 кВ, ток зонда 50 нА, счетное время для Zn, Fe, S на пике – 20 с, на фоне – 10 сек, для остальных элементов - 60 и 20 с соответственно. В качестве стандартов использовались ZnS (ZnLa, SKa), CdSe (SeKa, CdLa), FeS2 (FeKa), Mn(MnKa),

InSb (InLa, SbLa), Cu (CuLa) GaAs (GaLa, AsLa), Ge(GeLa). Рентгенодифракционные исследования проводились фотометодом на приборе УРС-50, FeKa, Mn-фильтр, камера РКУ-86, параметры ячейки получены на монокристальном дифрактомере Карра АРЕХ DUO фирмы Bruker, MoKa-анод.

Изучение оптических свойств и фотографирование проводилось на микроскопе Zeiss AxioImager A1M. Спектр отражения гринокита был получен на микроскопе-спектрофотометре UMSP-50 фирмы OPTON с использованием стандарта WTiC.

| Компоненты                                           | 1      | 2             | 3     | 4           | 5      |  |  |  |  |  |  |
|------------------------------------------------------|--------|---------------|-------|-------------|--------|--|--|--|--|--|--|
| Zn                                                   | 3.65   | .65 3.81 3.58 |       | 3.62        | 3.33   |  |  |  |  |  |  |
| Cd                                                   | 73.5   | 73.5 72.9 7   |       | 72.92 72.67 |        |  |  |  |  |  |  |
| S                                                    | 23.09  | 22.89         | 22.73 | 22.73       | 22.92  |  |  |  |  |  |  |
| Сумма                                                | 100.24 | 4 99.6 99.2   |       | 99.03       | 99.82* |  |  |  |  |  |  |
| Формульные коэффициенты,<br>расчет на Σ(Me+S) = 2 ат |        |               |       |             |        |  |  |  |  |  |  |
| Zn                                                   | 0.078  | 0.082         | 0.077 | 0.079       | 0.072  |  |  |  |  |  |  |
| Cd                                                   | 0.915  | 0.913         | 0.919 | 0.916       | 0.912  |  |  |  |  |  |  |
| S                                                    | 1.007  | 1.005         | 1.004 | 1.005       | 1.009  |  |  |  |  |  |  |

Таблица 1. Химический состав гринокита (мас.%) с Дараи-Пиёза

Примечание: \* - в состав суммы входит Pb = 0,93% (0.006 ф.е.).

## Краткие сведения о геологии и минералогии Дараи-Пиёза

Дараи-Пиёзский массив площадью ~16 км<sup>2</sup>, расположенный на территории Таджикистана в пределах Матчинского горного узла на стыке Зеравшанского, Туркестанского и Алайского хребтов, давно уже снискал известность среди минералогов как объект, несущий разнообразную и очень необычную минерализацию редких элементов, в первую очередь Li, B, Zr, REE (Дусматов, 1968; 1971; Belakovskiy, 1991 и др.). Геологическое изучение массива, начатое Таджикско-Памирской экспедицией 1932-1936 гг. (Москвин, 1937), затруднено из-за расчлененного высокогорного рельефа и перекрытия части коренных выходов ледниками и моренными отложениями. По этой причине большинство находок здесь происходит из обломочного моренного материала. Массив входит в состав матчайского интрузивного ранне-позднепермского комплекса (Ненахов, 1987), к которому относится еще ряд щелочных массивов, в основном находящихся на территории Кыргызстана (Ходжа-Ачканский, Матчинский, Кульпский и др). Внешняя часть Дараи-Пиёзского массива сложена биотитовыми, иногда турмалиновыми гранитами, средняя - биотитовыми гранитами, переходящими в граносиениты, а центральная - кварцевыми и эгириновыми сиенитами. В северо-восточной части отмечены выходы канкринитовых фойяитов. Для массивов матчайского комплекса характерны повышенные содержания Li, Ta, Nb, Zr, Be, Sn, Mo, Th и U (Дусматов, 1971; Ненахов и др., 1987), что в некоторых случаях обуславливает необычную их минералогию (Паутов и др., 2013b), наиболее ярко проявленную на Дараи-Пиёзе. Здесь разнообразны жильные породы, несущие редкометальную минерализацию: эгиринмикроклин-кварцевые пегматиты с лейкосфенитом, стиллуэллитом-(Се), таджикитом-(Се), пирохлором, минералами ряда согдианит-сугилит, титанитом, данбуритом, нептунитом, минералами группы эвдиалита, тяньшанитом; эгирин-микроклинридмерджнеритовые пегматиты; сиенитовые пегматиты с туркестанитом; микроклин-кальцит-пектолитовые жилы с туркестанитом (Дусматов, 1968, 1971; Belakovskiy, 1991; Grew et al., 1993; Паутов и др., 2013a, b и др.). Необычны существенно кварцевые породы («кварцолиты»), встреченные исключительно в составе моренного обломочного материала с разнообразной цезиевой минерализацией (Агаханов, 2010; Паутов и др., 2013а). В массиве широко распространены карбонатиты - существенно кальцитовые породы с эгирином, калиевым полевым шпатом, иногда с кварцем (Дусматов, 1971; Файзиев и др., 2008; Паутов и др., 2010), а также разнообразные фениты, представленные пироксен-полевошпат-волластонитовыми (иногда существенно агреллитовыми) породами с мизеритом, баратовитом, бафертиситом, хейтманитом и др. (Дусматов, 1968,1971; Семенов, Дусматов, 1989; Reguir et al., 1999; Паутов и др., 2013b).

# Кадмиевая минерализация и вмещающие ее породы

Гринокит и отавит встречены в обломках эгирин-микроклин-кварцевых пегматитов в галените, который образует небольшие гнезда, заполняющие интерстиции между крупными кристаллами полевых шпатов, а также образует скопления среди гранулированного кварца (рис. 1). В галените из других ассоциаций кадмиевые минералы нами встречены не были. Для пород, содержащих галенит с кадмиевой минерализацией, характерна крупнозернистая структура, сильные вариации содержаний цветных минералов. Облик породы определяется сочетанием гнезд гранулированного *кварца* (зерна 0.1–1.5 мм), крупных зерен (с элементами кристаллографической огранки) микроклина (от 1 до 5-6 см) и уплощенно-призматических кристаллов пироксена эгирин-геденбергитового ряда (от первых мм до 1.5 см в изученных образцах). Галенит образует бесформенные гнезда размерами до нескольких сантиметров, сложенные агрегатом зерен размером от нескольких мм до 1-1.5 см. С галенитом в изученных образцах тесно срастаются блестящие черные призматические кристаллы калийсодержащего амфибола рибекит-арфведсонитовой серии. Здесь же находятся выделения полилитионита, цезийкуплетскита, единичные кристаллы туркестанита светло-зеленого цвета. Изредка встречаются пустотки, инкрустированные мелкими кристаллами кварца свободного роста и заполненные объемными сетчатыми кварцевыми образованиями, возможно, возникшие в результате выщелачивания какого-то не сохранившегося минерала. В интерстициях зерен галенита спорадически встречаются прозрачные зеленовато-желтые зерна *англезита* размером до 1.5 мм.



Рис. 1. Образец эгирин-кварц-полевоппатовой породы (4 x 4.5 см) с галенитом и гринокитом: Мс - кристаллы микроклина. Qtz - гранулированный кварц; Ае - эгирин; Amph - амфибол рибекит-арфведсонитовой серии; Gn - галенит. несуций зерна гринокита; Angl - англезит; Cs-kupl - цезий-куплетскит (пластинчатый коричневый).

Гринокит CdS образует очень редкие отдельные зерна 0.1–0.4 мм насыщенного желтого, зеленоватожелтого, желтого с оранжевым оттенком цвета с сильным алмазным блеском, очень похожие на серу (рис. 2). Гринокит срастается с галенитом с образованием индукционных поверхностей, что говорит об одновременной кристаллизации галенита и гринокита. В отраженном свете минерал темно-серый с зеленоватым оттенком и слабыми желтовато-зелеными рефлексами; в скрещенных николях наблюдаются интенсивные оранжево-желтые рефлексы (рис. 3). Спектр отражения гринокита приведен на рис. 4, в нем имеется характерный максимум в области 490–500 нм.



Рис. 2. Кристалл гринокита в срастании с галенитом (размер кристалла 0.4 мм).

Химический состав гринокита получен для этого же зерна. Оно практически однородно в отраженных электронах, со стабильным содержанием цинка 3.3–3.8 мас.% Zn (табл. 1, рис. 5). Ренттеновская порошкограмма изученного гринокита (табл. 2) близка к синтетическому CdS (гекс. с.); пространственная группа *Рб*<sub>3</sub>*mc*, параметры ячейки, полученные для монокристалла, *a* = 4.171(2),



c = 6.772(1) Å, V = 102.1(1) Å<sup>3</sup>, близки к таковым синтетического гринокита (Antony et al., 1990).



Рис. 3. Зерно гринокита с галенитом в отраженном свете: а - при одном николе, b - в скрещенных николях.



Рис. 4. Спектр отражения гринокита.



Рис. 5. Зерно гринокита (более темное) в срастании с галенитом (более светлый). Изображение в режиме BSE.

Отавит CdCO<sub>3</sub> встречен в образце гранулированного кварца с галенитом. Этот карбонат развивается вдоль контакта кварца с галенитовым прожилком длиной 3 см и толщиной 1 – 3 мм в виде желтоватой рыхлой корки ~ 0.5 х 0.5 мм, сложенной ромбоэдрическими кристалликами (размером от первых микро до 10-15 микронов), и их сростками (рис. 6). В изображении обратных электронов наблюдается неоднородность, связанная с вариациями химического состава (табл. 3). По результатам электронно-зондового анализа, корки содержат (мол. %): 77 – 87 CdCO<sub>3</sub>, 4 – 19 CaCO<sub>3</sub>, 4 – 9 PbCO<sub>3</sub>, 1 – 5 ZnCO<sub>3</sub>. Диагностика минерала подтверждена рентгеновским порошковым методом. Часть линий порошкограммы соответствует церусситу (табл. 4),

Таблица 2. Межплоскостные расстояния гринокита

| Дараи- | Пиёз   | PDF 41-10 | )48 (синтетич    | еский). |
|--------|--------|-----------|------------------|---------|
| I/I_0  | d∕n, Å | hkl       | I/I <sub>0</sub> | d∕n, Å  |
| 100    | 3.56   | 100       | 62               | 3.586   |
| 80     | 3.33   | 002       | 91               | 3.360   |
| 100    | 3.135  | 101       | 100              | 3.164   |
| 30     | 2.426  | 102       | 29               | 2.452   |
| 60     | 2.050  | 110       | 48               | 2.071   |
| 40     | 1.883  | 103       | 50               | 1.8998  |
| <10m   | 1.782  | 200       | 8                | 1.7931  |
| 30     | 1.744  | 112       | 31               | 1.7627  |
| 15     | 1.719  | 201       | 15               | 1.7325  |
|        |        | 004       | 5                | 1.6799  |
|        |        | 202       | 3                | 1.5819  |
|        |        | 104       | 3                | 1.5213  |
| <10m   | 1.3927 | 203       | 15               | 1.3998  |
|        |        | 210       | 5                | 1.3554  |
| <10m   | 1.3159 | 211       | 8                | 1.3287  |
|        |        | 114       | 4                | 1.3045  |
| <10m   | 1 2404 | 105       | 9                | 1.2585  |
| ×10III | 1,2494 | Привод    | ится еще 17 л    | иний    |

Примечание. Условия съемки: фотометод, камера РКУ-86, Fe-анод, Мп-фильтр.

который развивается по галениту и отавиту и содержит до 2.7 мас.% CdO.

Таблица 3. Химический состав отавита (мас.%) с Дараи-Пиёза

|                                               | 1     | 2 3 4 |       | 4     | 5     | 6*    | 7     |  |  |  |  |
|-----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| CdO                                           | 57.93 | 59.94 | 57.56 | 60.83 | 62.98 | 57.55 | 58.26 |  |  |  |  |
| CaO                                           | 3.92  | 1.79  | 4.93  | 2.00  | 1.41  | 6.48  | 3.86  |  |  |  |  |
| PbO                                           | 8.01  | 9.58  | 8.45  | 10.80 | 9.81  | 6.09  | 9.55  |  |  |  |  |
| ZnO                                           | 2.36  | 2.36  | 2.27  | 0.51  | 0.60  | 1.47  | 1.17  |  |  |  |  |
| CO2**                                         | 25.83 | 24.83 | 26.65 | 24.70 | 24.83 | 26.66 | 25.83 |  |  |  |  |
| Сумма                                         | 98.05 | 98.50 | 99.86 | 98.84 | 99.63 | 99.00 | 98.67 |  |  |  |  |
| Расчет формулы Σ(Me <sup>2+</sup> )= 1.00 ат. |       |       |       |       |       |       |       |  |  |  |  |
| Cd                                            | 0.77  | 0.82  | 0.74  | 0.84  | 0.87  | 0.74  | 0.78  |  |  |  |  |
| Ca                                            | 0.12  | 0.06  | 0.15  | 0.06  | 0.04  | 0.19  | 0.12  |  |  |  |  |

| Pb | 0.06 | 0.08 | 0.06 | 0.09 | 0.08 | 0.04 | 0.07 |
|----|------|------|------|------|------|------|------|
| Zn | 0.05 | 0.05 | 0.05 | 0.01 | 0.01 | 0.01 | 0.02 |
| С  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 |

Примечание. \* – в состав суммы входит SO<sub>3</sub> = 0.75% (0.02 ат.) \*\* – CO<sub>2</sub> расчетные значения.



Рис. 6. Крупное выделение отавита на границе с галенитом (Gn), замещающееся Cd-содержащим церусситом (Css). Точки анализа соответствуют номерам в таблице 3. Изображение в режиме BSE.

Отавит – весьма редкий минерал, описанный первоначально в Цумебе, Намибия (Schneider, 1906). Его последующие находки сделаны в зоне окисления обогащенных Cd сульфидных или селенидных месторождений и рудопроявлений (Johan, 1962; Бурьянова и др., 1969; Young et al., 1987; Lattanzi et al., 1998). Данные по составу природного отавита малочисленны, поэтому нам представилось интересным не только привести здесь результаты анализа дараи-пиёзского минерала, но и сопоставить их с имеющимися в литературе данными, которые представлены на



рис. 7. Видно, что отавит из зоны окисления рудных месторождений – Цумеб (www.rruff.info), Мо Ба, Вьетнам (Johan, 1962), практически безкалыциевый, но содержит до 13 мол.% (PbCO<sub>3</sub> + ZnCO<sub>3</sub>); напротив, отавит из сульфидных жил в известняках (Young et al., 1987) содержит до 35% мол. CaCO<sub>3</sub>. Отавит с Дараи-Пиёза занимает на диаграмме промежуточное положение.

Таблица 4. Порошковые рентгеновские данные смеси отавита с церусситом, Дараи-Пиёз

| I/Io   | d/n, Å | компонент       |
|--------|--------|-----------------|
| 80     | 4.41   | церуссит        |
| 60     | 3.80   | отавит          |
| 100    | 3.572  | церуссит        |
| 90     | 3.486  | церуссит        |
| 40     | 3.063  | церуссит        |
| 60ш    | 2.970  | отавит          |
| 30     | 2.571  | церуссит        |
| 40     | 2.517  | церуссит        |
| 80     | 2.476  | отавит          |
| 20     | 2.210  | церуссит        |
| 50     | 2.072  | отавит+церуссит |
| 20     | 2.034  | отавит+церуссит |
| 30     | 2.009  | церуссит        |
| 30     | 1.971  | церуссит        |
| 60     | 1.930  | церуссит        |
| 40m    | 1.854  | отавит+церуссит |
| 40.111 | 1.843  | отавит          |
| 40m    | 1.7690 | отавит+церуссит |

Примечание. Условия съемки: фотометод, камера РКУ-86, Feанод, Мп-фильтр.



Рис. 7. Составы (мол.%) отавита на тройной диаграмме конечных членов: CdCO<sub>3</sub>(Cd), CaCO<sub>3</sub>(Ca), PbCO<sub>3</sub>(Pb), ZnCO<sub>3</sub>(Zn). + -Дараи-Пиёз (наши данные); × – Цумеб, Намибия (WWW.TTUff.info, обр. R050677). О – Coldstones Quarry. N. Yorkshire. Англия (Young et al., 1987); • - Мо Ба, Вьетнам (Johan, 1962).

Если гринокит и отавит для Дараи-Пиёза – это минералогическая редкость, то другой концентратор кадмия – сфалерит – является здесь более распространенным минералом. Скопления крупнокристаллического сфалерита темнозеленого, коричневого цвета встречены в кварцолитовых глыбах вместе с галенитом. Отдельные прозрачные зерна желто-коричневого цвета с оранжевым оттенком находятся в кварцполевошпатовых породах в тесном парагенезисе с галенитом, лейкосфенитом, барилитом, березанскитом. Нередко сфалерит встречается в виде обособленных зерен желто-зеленого цвета (до 8 мм) в эгирин-кварц-микроклиновой породе с бафертиситом, хейтманитом, перротитом, калькибеборсилитом-(Y), пирохлором, цектцеритом флюоритом. Темно-бурый, почти черный и высокожелезистый сфалерит в виде гнезд размером до 4 см найден в существенно кварцевых породах с астрофиллитом, эгирином, микроклином и альбитом. В кварц-микроклиновой породе С полилитионитом, эгирином, неполными

псевдоморфозами по туркестаниту, галенитом, пирохлором встречены полупрозрачные ло прозрачных зерна сфалерита желтовато-зеленого цвета размером до 1 см. Многие зерна здесь несут следы частичного растворения и замещены сетчатым агрегатом гемиморфита. Для сфалерита из некоторых ассоциаций, встреченных на Дараи-Пиёзе, нами были получены составы, приведенные в таблице 5. Примечательно, что во всех проанализированных образцах сфалерита присутствует кадмий в количестве от 0.12 до 3.65 мас.% Cd.

Таблица 5. Химический состав сфалерита (мас.%) с Дараи-Пиёза

| № п/п                             | 1                   | 2          | 3     | 5     | 6     | 7       | 8       | 11        | 13         | 14                     | 16       | 15       | 17        | 18         | 19       |
|-----------------------------------|---------------------|------------|-------|-------|-------|---------|---------|-----------|------------|------------------------|----------|----------|-----------|------------|----------|
| Nº                                |                     |            | 6112  |       |       | 6111    | 6097    | 6113      | 5371       | 61                     | 08       | 6110     | 846/1     | 846/6      | 922/1    |
| образ-                            | браз- светло-желтый |            |       |       |       | светло- | чер-    | темно-    | темно-     | черный корич-          |          | бу-      | зеленый с | зеленый    |          |
| ца, корродированный               |                     |            |       |       |       | корич-  | ный     | корич-    | корич-     | невый                  |          |          | рый       | желтоват.  | с желто- |
| цвет                              |                     |            |       | не-   |       | невый   | невый   |           |            |                        |          | оттенком | BAT. OT-  |            |          |
|                                   |                     |            | -     | 1     |       | вый     |         |           |            |                        |          |          |           |            | тенком   |
| Zn                                | 64,30               | 64,58      | 63,79 | 63,29 | 63,68 | 66,83   | 64,31   | 65,59     | 57,66      | 56,86                  | 56,20    | 62,83    | 66.34     | 65.20      | 66.10    |
| Fe                                | 0,18                | 0,18       | 0,16  | 0,12  | 0,18  | 0,04    | 2,47    | 1,53      | 8,26       | 8,95                   | 9,48     | 3,99     | 0.17      | 0.70       | 0.15     |
| Mn                                | 0,00                | 0,00       | 0,12  | 0,10  | 0,10  | 0,00    | 0,20    | 0,34      | 0,56       | 0,78                   | 0,90     | 0,30     | 0.20      | 0.20       | 0.20     |
| Cd                                | 3,65                | 3,19       | 3,19  | 3,10  | 3,10  | 0,61    | 0,30    | 0,28      | 0,24       | 0,11                   | 0,12     | 0,22     | 0.30      | 0.30       | 0.40     |
| Cu                                | 0,00                | 0,00       | 0,00  | 0,00  | 0,00  | 0,00    | 0,01    | 0,02      | 0,00       | 0,00                   | 0,00     | 0,01     | 0,00      | 0,00       | 0,00     |
| Ga                                | 0,00                | 0,00       | 0,01  | 0,07  | 0,02  | 0,00    | 0,01    | 0,00      | 0,00       | 0,00                   | 0,00     | 0,01     | 0,00      | 0,00       | 0,00     |
| Ge                                | 0,00                | 0,00       | 0,00  | 0,00  | 0,00  | 0,02    | 0,05    | 0,03      | 0,00       | 0,00                   | 0,00     | 0,00     |           |            |          |
| Sb                                | 0,00                | 0,00       | 0,00  | 0,00  | 0,02  | 0,01    | 0,00    | 0,01      | 0,00       | 0,00                   | 0,00     | 0,01     |           |            |          |
| As                                | 0,00                | 0,00       | 0,01  | 0,00  | 0,00  | 0,00    | 0,01    | 0,00      | 0,00       | 0,00                   | 0,01     | 0,00     | 0,00      | 0,00       | 0,00     |
| S                                 | 32,74               | 32,45      | 31,87 | 32,68 | 32,34 | 32,11   | 32,95   | 32,07     | 33,89      | 33,61                  | 32,35    | 32,12    | 32,80     | 33,60      | 33,20    |
| Se                                | 0,00                | 0,00       | 0,01  | 0,01  | 0,00  | 0,01    | 0,00    | 0,00      | 0,00       | 0,00                   | 0,00     | 0,02     |           |            |          |
| Сумма                             | 100,8<br>7          | 100,4<br>0 | 99,17 | 99,38 | 99,44 | 99,62   | 100,33  | 99,88     | 100,60     | 100,3<br>1             | 99,06    | 99,51    | 99.81     | 99.95      | 99.85    |
|                                   |                     |            |       |       |       | Pa      | счет на | Me+ (S, S | Se) = 2 ap | fu                     |          |          |           |            |          |
| Zn                                | 0,964               | 0,972      | 0,974 | 0,958 | 0,966 | 1,007   | 0,953   | 0,983     | 0,840      | 0,831                  | 0,836    | 0,941    | 0,991     | 0,982      | 0,995    |
| Fe                                | 0,003               | 0,003      | 0,003 | 0,002 | 0,003 | 0,000   | 0,043   | 0,027     | 0,141      | 0,153                  | 0,165    | 0,070    | 0,004     | 0,012      | 0,002    |
| Mn                                | 0,000               | 0,000      | 0,002 | 0,002 | 0,002 | 0,000   | 0,004   | 0,006     | 0,010      | 0,014                  | 0,016    | 0,005    | 0,003     | 0,003      | 0.000    |
| Cd                                | 0,032               | 0,028      | 0,028 | 0,027 | 0,027 | 0,005   | 0,003   | 0,002     | 0,002      | 0,001                  | 0,001    | 0,002    | 0,002     | 0,002      | 0,003    |
| S                                 | 1,001               | 0,996      | 0,992 | 1,009 | 1,001 | 0,987   | 0,996   | 0,980     | 1,007      | 1,001                  | 0,982    | 0,981    | 1,000     | 1,032      | 1,027    |
| Метод                             |                     |            |       |       |       |         |         |           |            |                        |          |          |           |            |          |
| ана-                              | EDS                 | EDS        | WDS   | WDS   | WDS   | WDS     | WDS     | WDS       | EDS        | EDS                    | WDS      | WDS      | Me        | год не при | веден    |
| лиза                              |                     |            |       |       |       |         |         |           |            |                        |          |          |           |            |          |
|                                   |                     |            |       |       |       |         |         |           |            | Файзиев, Дусматов      |          |          |           |            |          |
| Наши данные, аналитик Л.А. Паутов |                     |            |       |       |       |         |         |           |            | (1973)*, аналитик Е.В. |          |          |           |            |          |
|                                   |                     |            |       |       |       |         |         |           |            |                        | Максимон | за       |           |            |          |

Примечание. Краткая характеристика образцов с проанализированным сфалеритом:

5371 – существенно кварцевая порода с эгирином, астрофиллитом, наливкинитом, сфалеритом; 6097, 6113 – фрагмент «кварцолитовой глыбы» с микроклином, кальцитом; 6110 – бафертисит-кварцевая порода; 6108 – кварц-эгирин- полевошпатовая порода с бафертиситом;

6111, 6112 – кварц-полевопшатовая порода с эгирином, полилитионитом, флюоритом, сульфидами (галенит, сфалерит) и ячеистым гемиморфитом; \* - данные по ассоциации не приводятся.

0.00 - содержание компонента ниже предела обнаружения; пробел - данные по компоненту не приведены.

Методы исследования: EDS – микрозондовый с использованием энергодисперсионного спектрометра; WDS – микрозондовый с использованием энергодисперсионного спектрометра.

### Обсуждение результатов

Анализы сфалерита с Дараи-Пиёза, полученные А.Р. Файзиевым и В.Д. Дусматовым (1973), а также выполненные нами (табл. 1) показывают, что минерал является одним из концентраторов кадмия на Дараи-Пиёзе. Другими концентраторами его являются встреченные нами гринокит и вторичные отавит с Cd-содержащим церусситом. Несмотря на близость геохимических свойств цинка и кадмия, что обуславливает частичное связывание кадмия в сфалерит, здесь мы наблюдаем разделение Zn и Cd, отдельные 107 случаи которого обсуждались ранее (Спиридонов и др., 1997; Плетнев, 1998) и причины которого, на наш взгляд, следующие:

1. Часть цинка (возможно, даже большая), связывается на ранних стадиях с силикатами, концентраторами ОСНОВНЫМИ его являются представители группы миларита - дусматовит  $K(\Box), Na, K_2(Mn, Y, Zr)_2(Zn, Li)_3Si_{12}O_{30},$ шибковит  $K(Ca, Mn, Na)_2(K_{2-x}\Box)_x)_2$  $Zn_3Si_{12}O_{30}$ ), дараипиозит  $K(Na,K,\Box)_2(Mn,Zr)_2(Li,Zn)_3Si_{12}O_{30},$ сугилит KNa<sub>2</sub>Fe<sup>3+</sup><sub>2</sub>Li<sub>3</sub>Si<sub>12</sub>O<sub>30</sub> (Семенов и др., 1975; Паутов и др., 1996; 1998; 2000). Тем самым снижается количество цинка, которое могло бы пойти на образование сфалерита, а следовательно, увлекло бы за собой и часть кадмия.

2. Концентрирование Сd на фоне общей массы халькофильных элементов произошло не только за счет появления более ранних Zn и Zn-содержащих силикатов, но также и за счет фиксации свинца в ряде минералов, преимущественно в оксидах (минералы группы пирохлора) и силикатах (представители групп гиалотекита, эканита и др.) (Агаханов и др., 2014; Pautov et al., 2015; Hawthorne

Список литературы:

Агаханов А.А. (2010) Минералогия цезия в щелочном массиве Дараи-Пиёз (Таджикистан). Дисс. на соиск. уч. степ. канд. геол.-мин. наук. М.: МГУ. 167 с.

Агаханов А.А., Паутов Л.А., Карпенко В.Ю. (2014) Минералогия свинца в щелочных породах массива Дараи-Пиёз // Рудный потенциал щелочного, кимберлитового и карбонатитового магматизма. Школа «Щелочной магматизм Земли». Тр. 31 Междунар. конф. памяти акад. Ф.П. Митрофанова (Москва, 7–8 октября 2014 г.) / Отв. ред. Л.Н. Когарко. Москва: ГЕОХИ РАН. С. 11–12.

Бадалов С.Т. (1991) Геохимические особенности рудообразующих систем. Ташкент: Фан. 144 с.

Бородин В.Л., Лютин В.И., Илюхин В.В., Белов Н.В. (1972) Изоморфный ряд кальцит – отавит // Докл. АН СССР. Т. 245. № 5. С. 1099–1101.

Бурьянова Е.З., Касатов Б.К., Трифонов Н.П. (1969) Новые данные об отавите // ЗВМО. Ч. 158. С. 308–317.

Геологический справочник по сидерофильным и халькофильным редким металлам // В.В. Иванов, О.Е. Юшко-Захарова, Л.Ф. Борисенко, Л.Н. Овчинников. М.:Недра, 1989. 462 с.

Геохимия, минералогия и генетические типы месторождений редких элементов // под ред. Власова К.А. Т. 1. Геохимия редких элементов. М.: Наука, 1964. 687 с.

Геохимия, минералогия и генетические типы месторождений редких элементов // под ред. Власова К.А. Т. 2. Минералогия редких элементов. М.: Наука 1964. 829 с.

Дусматов В.Д. (1968) К минералогии одного из массивов щелочных пород // Щелочные породы Киргизии и Казахстана. Фрунзе: Ылым. С. 134–135.

Дусматов В.Д. (1971) Минералогия щелочного массива Дараи-Пиез (Южный Тянь-Шань). Автореферат дисс. на соиск. уч. степ. канд. геол.-мин. наук. М.: ИМГРЭ. 18 с.

Иванов В.В. (1966) Геохимия рассеянных элементов Ga, Ge, Cd, In, Tl в гидротермальных месторождениях. М.: Недра. 389 с.

et al., 2018). И лишь на заключительных стадиях остатки свинца фиксируются в виде галенита.

3. Возможно, одним из факторов появления гринокита стал дефицит серы (он проявился в виде образования лёллингита, который является обычным халькогенидом Дараи-Пиёзе), на спровоцировавший, по-видимому, первоочередную фиксацию кадмия как более халькофильного по сравнению с цинком элемента в форме гринокита.

### Благодарности

Авторы благодарят за организацию и поддержку при проведении работ на массиве Дараи-Пиёз С.М. Миронова и Р.У. Собирову, а за помощь в сборах материала в полевые сезоны 1992–2017 гг. – А.Р. Файзиева, Т.К. Беркелиева, П.В. Хворова, М.А. Шодибекова, М.А. Миракова, С. Мамадшарифа и К. Холова; за полезные советы при подготовке и обсуждении статьи – И.В. Пекова, П.Ю. Плечова, Э. Сокол и Э.М. Спиридонова.

Ильин А.В. (2002) Геохимия кадмия в древних фосфоритах // Геохимия. № 12. С. 1323 – 1330.

Ильин А.В. (2008) Древние (эдиакарские) фосфориты. Тр. Геол. ин-та. Вып. 587. М.: ГЕОС. 160 с.

Минералы Хибинских и Ловозерских Тундр. Под ред. акад. А.Е. Ферсмана, проф. Н.А. Смольянинова и Э.М. Бонштедт. М.-Л.: Изд-во АН СССР. 1937. 563 с.

Москвин А.В. (1937) География и геология Восточного Каратегина // Таджикско-Памирская экспедиция 1935 года. М-Л. С. 682–739.

Ненахов В.М., Абакумова Л.Н., Кузнецов Л.В., Хрестенков П.А. (1987) Легенда интрузивного магматизма Памиро-Алая (объяснительная записка). Ош: Южно-Киргизская геол.-развед. экспед. 395 с. (на правах рукописи).

Паутов Л.А., Агаханов А.А., Карпенко В.Ю., Гафуров Ф.Г. (2010) Александровит КLi<sub>3</sub>Ca<sub>7</sub>Sn<sub>2</sub>[Si<sub>6</sub>O<sub>18</sub>]<sub>2</sub>F<sub>2</sub> – новый оловянный минерал // Новые данные о минералах. Вып. 45. С. 5-16.

Паутов Л.А., Агаханов А.А, Карпенко В.Ю., Соколова Е.В., Хоторн Ф.К. (2013а) Менделеевит-(Се) (Сs,□)6(□,Сs)6(□,К)6(REE,Ca,□)30(Si700175) (H<sub>2</sub>O,OH,F,□)35 - новый минерал из Дараи-Пиёзского массива, Таджикистан // Докл. РАН. Т. 452. С. 440-444.

Паутов Л.А., Агаханов А.А., Соколова Е.В., Игнатенко К.И. (1996) Дусматовит - новый минерал группы миларита. Вестник Московского Университета. Серия 4, геология. № 2. С. 54–60.

Паутов Л.А., Агаханов А.А., Соколова Е.В. (1998) Шибковит K(Ca,Mn,Na)<sub>2</sub>(K<sub>2-x</sub>]<sub>x</sub>)<sub>2</sub>Zn<sub>3</sub>Si<sub>12</sub> О<sub>30</sub> - новый минерал группы миларита // ЗВМО. Вып.4. С. 89–94.

Паутов Л.А., Хворов П.В., Муфтахов В.А., Агаханов А.А. (2000) Согдианит и сугилит из пород Дара-и-Пиозского массива (Гаджикистан) // ЗВМО. № 3. С. 66–79.

Паутов Л.А., Карпенко В.Ю., Агаханов А.А. (2013b) Минералы ряда баратовит – катаямалит из пород Ходжа-Ачканского щелочного массива (Киргизия) // Новые данные о минералах. Вып. 48. С. 13-33.

Плетнёв П.А (1998) Гипогенный гринокит месторождения Золотая Гора // Минералогия Урала. Материалы III-го регионального совещания (12–14 мая 1998 года). Том II. Миасс: ИМин УрО РАН. С. 62–63.

Семёнов Е.И. (1969) Минералогия щелочного массива Илимаусак. М: Наука. 164 с.

Семёнов Е.И., Дусматов В.Д. (1989) Агреллит – первая находка в СССР // Минералогия Таджикистана. Вып. 8. С. 3–6.

Семёнов Е.И., Дусматов В.Д., Хомяков А.П., Воронков А.А., Казакова М.Е. (1975) Дарапиозит - новый минерал группы миларита // ЗВМО. Вып. 5. С. 583–585.

Спиридонов Э.М., Плетнёв П.А., Перелыгина Е.В., Рапопорт М.С. (1997) Геология и минералогия месторождения медистого золота Золотая Гора (Карабашское), Средний Урал (о проблеме «золото-родингитовой» формации). М.: изд-во геолог. ф-та МГУ. 192 с.

Файзиев А.Р., Дусматов В.Д. (1973) Химический состав халькопирита, сфалерита, пирита и леллингита некоторых рудопроявлений Центрального Таджикистана. В сборнике: Вопросы геологии Таджикистана. Вып. 3. С. 113–122.

Файзиев А.Р., Гафуров Ф.Г., Шарипов Б.Н. (2010) Карбонатиты Дараи-Пиезского массива щелочных пород (Центральный Таджикистан) и особенности их состава // Геохимия. № 11. С. 1154–1168.

Юшкин Н.П. (1980) Опыт среднемасштабной топоминералогии. Пайхойско-Южноновоземельская минералогическая провинция. Л.: «Наука». 376 с.

Anthony J.W., Bideaux R.A., Bladh K.W., Nichols M.C. (1990) Handbook of Mineralogy. Vol. I. Elements, Sulfides, Sulfosalts. Tucson: Mineral Data Publishing. 588 p.

Bailey J.C., Gwozdz R., Rose-Hansen J., Sørensen H. (2001) Geochemical overview of the Ilimaussaq alkaline complex, South Greenland // Geology of Greenland Survey Bulletin. Vol. 190. P. 35–53.

Belakovskiy D.I. (1991) Die se mineralien von Dara-i-Pioz im Hochgebirge Tadshikistans // Lapis. 16. №12. S. 42–48.

Butler J.R., Thompson A.J. (1967) Cadmium and zinc in some alkali acidic rocks // Geochimica et Cosmochimica Acta. Vol.31 (20). P. 97–105.

Černý P., Harris, D.C. (1978) The Tanco pegmatite at Bernic Lake, Manitoba. XI. Native elements, alloys, sulfides ^ and sulfosalts // Canad. Mineral. Vol. 16. P. 625–640.

Černý P., Meintzer E.R., Anderson A.J. (1985) Extreme fractionation in rare element granitic pegmatites: selected examples of data and mechanisms // Canad. Mineral. Vol. 23. P. 381 – 421.

Černý P., Masau M., Ercit T.S., Chapman R., Chakowsky L.E. Stannite and kesterite from the Peerless pegmatite, Black Hills, South Dakota, USA // Journ. Czech Geol. Soc. 2001. Vol. 46 (1–2). P. 27–33.

Chaplygin, I.V., Mozgova, N.N., Magazina, L.O., Kuznetsova, O.Yu., Safonov, Yu.G., Bryzgalov, I.A., Makovcký, E., Balić-Žunić, T. (2005) Kudriavite, (Cd,Pb)Bi<sub>2</sub>S<sub>4</sub>, a new mineral species from Kudriavy volcano, Iturup Island, Kuriles // Canad. Mineral. Vol. 43. P. 695–701.

Grew E.S., Yates M.G., Belakovsky, D.I., Rouse R.C., Su S-C., Marquez, N. (1994) Hyalotekite from reedmergneritebearing peralkaline pegmatite, Dara-I-Pioz, Tajikistan and from Mn skarn, Långban, Varmland, Sweden: a new look at an old mineral // Mineral. Magaz. 58. P. 285–297.

Hawthorne F.C., Sokolova E.V., Agakhanov A.A., Pautov L.A., Karpenko V.Yu., Grew E.S. (2018) Chemographic exploration of the hyalotekite structure-type // Mineral. Magaz., 82. P. 1–18.

*Johan Z. (1962)* Mineralogia cadmia na lozisku Mo Ba, VDR // Časopis pro mineralogii a geolog. № 2. s. 132–138 (на чешск. яз.).

Karup-Møller, S. (1978) The ore minerals of the llimaussaq intrusion: their mode of occurrence and their conditions of formation // Grønlands Geologiske Undersøgelse. Bulletin 127. 51 p.

Kissin S.A., Owens D.R., Roberts W.L. Černýite, a copper cadmium tin sulfide with the stannite structure // Canad. Mineral. 1978. Vol. 16. P. 139–146.

Krivovichev S.V., Vergasova L.P., Starova G.L., Filatov S.K., Britvin S.N., Roberts A.C., Steele I.M. (2002) Burnsite, KCdCu<sub>7</sub>O<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>Cl<sub>9</sub>, a new mineral species from the Tolbachik Volcano, Kamchatka Peninsula, Russia // Canad. Mineral. Vol. 40. P. 1171–1175.

*Kullerud G. (1953)* The FeS – ZnS system. A geological thermometer // Norsk Geologisk Tiddskrift. Bind 32. P. 61–147.

Okrugin V.M., Andreeva E.D., Chubarov V.M., Yablokova D.A., Shishkanova K.O., Chernev I.I., Chubarov M.V. (2015) Sulfides of the Modern Kamchatka Hydrothermal Systems // Proceedings World Geothermal Congress 2015. Melbourne. P. 1–9.

Pautov L.A., Agakhanov A.A.,, Sokolova E.V., Hawthorne F.C., Karpenko V.Yu., Siidra O.I., Garanin V.K., Abdu Y.A. (2015) Khvorovite, ideally  $Pb^{2+}_4Ca_2[Si_8B_2(SiB)O_{28}]F$ , a new hyalotekite-group mineral from the Darai-Pioz alkaline massif, Tajikistan; late-stage enrichment in  $Pb^{2+}$  in highly fractionated environments // Mineral. Magazine. Vol. 79. P. 949–963.

Reguir E.P., Chakhmouradian A.R., Evdokimov M.D. (1999) The mineralogy of a unique baratovite and miserite-bearing quartz-albite-aegirine rock from the Dara-i-Pioz complex, Northern Tajikistan // Canad. Mineral. Vol. 37. P. 1369–1384.

Rudnick R.L., Gao S. (2003) Composition of the continental crust. In R.L. Rudnick, Ed., The Crust, 3, p. 1–64. Treatise on Geochemistry, Amsterdam: Elsevier.

Schneider O. (1906) Vorläufige Notiz über einige sekundäre Mineralien von Otavi (Deutsch Süd-West-Afrika), darunter ein neues Cadmium – Mineral // Centralblatt für Mineralogie, Geologie und Paläontologie in Verbindung mit dem Neuen Jahrbuch für Mineralogie, Geologle und Paläontologie. 388–389 (на нем. яз.)

Schwartz M.O. (2000) Cadmium in zinc deposits: economic geology of a polluting element // International Geology Review. Vol. 42. P. 445–469.

*Thornton I. (1986)* Geochemistry of cadmium. In: Mislin H., Ravera O. (eds) Cadmium in the Environment. Experientia Supplementum. Vol 50. Birkhäuser Basel. P. 7–12.

Tombros S., Seymour K.S., Spry P.G., Williams-Jones A. Greenockite and zincian greenockite in epithermal polymetallic Ag-Au-Te mineralization, Tinos Island, Hellas: Description and conditions of formation // N. Jb. Miner. Abh. 2005. Vol. 182.1. P. 1–9.

Young G., Ryback G., Braithwaite R.S.W., Francis J.G. (1997) Prosopite, doyleite and otavite from Coldstones Quarry, Pateley Bridge, North Yorkshire // Mineral. Magaz. Vol. 61. P. 895–897.

Zelenski M., Garavelli A., Pinto D., Vurro F., Moëlo Y., Bindi L., Makovicky E., Bonaccorsi E. (2009) Tazieffite, Pb<sub>20</sub>Cd<sub>2</sub>(As,Bi)<sub>22</sub>S<sub>50</sub>Clx<sub>10</sub>, a new chloro-sulfosalt from Mutnovsky volcano, Kamchatka Peninsula, Russian Federation // Amer. Mineral. Vol. 94. P. 1312–1324.

www.rruff.info/otavite