НОВЫЕ ФАЗЫ В Cu-Ni РУДАХ НОРИЛЬСКИХ МЕСТОРОЖДЕНИЙ

Т.А. Кравченко

Институт геологии и минералогии, СО РАН, Новосибирск, tanyuk@igm.nsc.ru С.Н. Ненашева

Минералогический музей им. А.Е. Ферсмана, РАН, Москва, nenashevasn@mail.ru

При исследовании руд норильских магматических Cu-Ni месторождений, в которых основными рудообразующими минералами являются халькопирит CuFeS₂, пентландит (Ni,Fe)₉S₈, кубанит CuFe₂S₃ и пирротин Fe_{1-x}S, впервые обнаружены две новые фазы, кристаллизующиеся вдоль границы зерен халькопирита CuFeS₂ и пентландита (Ni,Fe)₉S₈ и почти не отличающиеся от халькопирита по оптическим свойствам. Составы новых фаз, названных условно никелистым халькопиритом (Ni-cp-1 и Ni-cp-2), соответствуют составу калькопирита, в котором часть меди замещена никелем (Cu,Ni)FeS₂. Состав в (мас.%): Ni-cp-1 – Cu 14.96, Ni 19.77, Fe 30.38, Co 0.31, S 34.24; Ni-cp-2 – Cu 12.12, Ni 18.44, Fe 33.52, Co 0.30, S 34.58. Формулы: (Cu_{0.35}Ni_{0.57})_{0.92}(Fe_{1.10}Co_{0.01})_{1.1}S_{1.97} и (Cu_{0.57}Ni_{0.47})_{1.04} (Fe_{1.00}Co_{0.01})_{1.01}S_{1.96}. Показано, что Ni-cp-1 с отношением (Cu,Ni)/(Fe,Co) = 0.83 является промежуточной фазой между халькопиритом и обогащенным железом пентландитом, а Ni-cp-2 с отношением (Cu,Ni)/(Fe,Co) = 1.03 – между халькопиритом и обогащенным никелем пентландитом. Сопоставление составов продуктов кристаллизации Cu-Fe-S расплавов, соответствует об одновременной кристаллизации норильских Cu-Ni руд прри повышенном давлении. В статье 2 таблицы, 1 рисунок, список литературы из 9 названий.

Ключевые слова: халькопирит, пентландит, кристаллизация, расплав Cu-Fe-S, расплав Cu-Fe-Ni-S.

Несмотря на многочисленные исследования, условия образования норильских магматических Cu-Ni месторождений не достаточно ясны. Фазовые соотношения основных рудообразующих минералов — халькопирита CuFeS₂, пентландита (Ni,Fe)₉S₈, кубанита $CuFe_2S_3$ и пирротина $Fe_{1-x}S$ — в совместных ассоциациях свидетельствуют об их одновременном образовании. Это не находит объяснения, исходя из имеющихся в литературе экспериментальных данных об особенностях кристаллизации Cu-Fe-S и Cu-Ni-Fe-S сульфидных расплавов. Халькопирит в ассоциации с кубанитом и пирротином кристаллизуется из расплавов, содержащих >50 ат.% серы и не образуется в ассоциациях с моихукитом Cu₉Fe₉S₁₆, который считается продуктом кристаллизации халькопиритового твердого раствора (Cu,Fe)S и, как и пентландит, обеднен серой, по сравнению с халькопиритом. Находка фаз, состав которых по содержанию меди и никеля является промежуточным между составами халькопирита и пентландита, представляет интерес для понимания условий совместного образования этих минералов и, в целом, особенностей кристаллизации сульфидных расплавов, соответствующих составам норильских Cu-Ni руд.

Методы исследования

В настоящей работе методами оптической микроскопии были изучены образцы руд норильских Cu-Ni месторождений Норильск-1 и Талнах из коллекции Минералогического музея им. А.Е. Ферсмана. Химический состав фаз определен микрозондовым анализом на микроанализаторах «Camebax-Micro» и JXA-8100. В качестве стандарта использован халькопирит CuFeS₂. Ускоряющее напряжение 20 кВ, ток поглощенных электронов 40 нА, угол отбора 40°, время счета 10 сек. на каждой аналитической линии, диаметр зонда 2-3 мкм. Погрешность определения всех компонентов находится в пределах 2 отн.%. Предел обнаружения элементов С_{тіп} рассчитан по 26-критерию при уровне значимости 99%. С_{тіп} в мас.%: Си, Ni — 0.04, Fe, Co — 0.03, S - 0.01.

Результаты изучения и их обсуждение

Микрозондовые анализы изученных образцов представлены в таблице 1. Полученные результаты, в целом, не отличаются от соответствующих данных других исследователей. Исключением являются образцы 2 и 7, в которых, кроме известных минералов: пирротина Fe_{1-x}S, кубанита CuFe₂S₃, пентландита (Ni,Fe)₉S₈ и халькопирита CuFeS₂, обнаружены две новые фазы. Эти фазы названы условно никелистым халькопиритом (Ni-cp-1 и Ni-cp-2, обр. 2 и 7, табл. 1), так как их составы соответствуют составу халькопирита, в котором часть меди замещена никелем (Cu,Ni)FeS₂. Их составы пересчитываются на

Nº	Фазы			мас.%								(Cu,Ni)/	
		Fe	Co	S	Cu	Ni	Σ	Fe	Со	S	Cu	Ni	(Fe,Co)
1	pn	36.49	0.33	33.21	1.32	28.40	99.75	29.71	0.25	47.09	0.95	22.00	0.77
	ср	30.28	0.00	34.92	34.29	0.13	99.62	24.95	0.00	50.12	24.83	0.10	1.00
	cb	40.46	0.00	35.52	23.66	0.20	99.84	32.80	0.00	50.18	16.86	0.16	0.52
2	pn	35.54	0.50	33.50	0.85	29.43	99.81	28.87	0.39	47.40	0.61	22.74	0.80
	Ni-cp	33.52	0.30	34.58	12.12	18.44	98.97	27.42	0.23	49.28	8.71	14.36	0.83
	ср	30.98	0.10	35.05	29,43	4.46	100.01	25.34	0.08	49.95	21.16	3.47	0.97
	ср	30.08	0.01	35.22	34,74	0.07	100.12	24.65	0.01	50.27	25.02	0.06	1.02
	ср	30.21	0.02	35.69	34,32	0.03	100.26	24.64	0.01	50.72	24.61	0.02	1.00
	ср	30.38	0.00	35.05	34,29	0.00	99.72	24.99	0.00	50.23	24.79	0.00	0.99
	cb	40.87	0.00	35.91	23,15	0.02	99.95	33.02	0.00	50.53	16.44	0.01	0.50
	ро	61.23	0.01	38.89	0,02	0.07	100.22	47.44	0.00	52.49	0.01	0.06	
3	ср	30.50	0.00	34.51	34.50	0.14	99.65	25.20	0.00	49,65	25.04	0.11	1.00
	cb	40.77	0.00	34.93	23.44	0.02	99.16	33.35	0.00	49,78	16.86	0.02	0.51
4	pn	33.11	1.07	32.34	0.03	31.48	98.03	27.49	0.84	46.78	0.02	24.87	0.88
	ср	30.38	0.05	34.80	33.60	0.58	99.40	25.08	0.04	50.06	24.38	0.45	0.99
	ср	30.46	0.00	35.87	33.11	0.04	99.47	24.95	0.00	51.19	23.83	0.03	0.96
	ро	61.05	0.01	39.01	0.02	0.31	100.40	47.21	0.01	52.54	0,02	0.23	
5	ср	30.10	0.01	34.95	34.58	0.05	99.69	24.79	0.01	50.14	25.02	0.04	1.01
6	ср	30.06	0.00	35.31	34.70	0.00	100.07	24.63	0.00	50.39	24.98	0.00	1.01
7	Ni-cp	30.38	0.31	34.24	19.77	14.96	99.65	24.92	0.24	48.92	14.25	11.67	1.03
	ср	30.14	0.04	34.76	33.68	0.71	99.32	24.91	0.03	50.05	24.46	0.56	1.00
	ср	30.24	0.01	35.15	34.58	0.01	99.99	24.81	0.01	50.24	24.94	0.01	1.00
	ро	59.68	0.02	39.90	0.04	0.39	100.03	46.04	0.02	53.63	0.03	0.29	
8	pn	31.03	0.59	33.30	0.08	35.10	100.10	25.22	0.45	47.14	0.06	27.13	1.06
	ср	30.35	0.00	35.39	34.22	0.02	99.98	24.86	0.00	50.49	24.63	0.02	0.99
	ро	60.53	0,02	39.83	0.01	0.30	100.70	46.48	0.02	53.28	0.01	0.22	
9	pn	30.19	0.50	32.88	0.04	35.37	98.98	24.82	0.39	47.09	0.03	27.67	1.10
	ср	30.44	0.02	34.89	34.49	0.00	99.83	25.04	0.01	50.00	24.94	0.00	1.00
10	pn	29.76	0.51	33.08	0.07	35.63	99.04	24.43	0.39	47.30	0.05	27.83	1.12
	ср	30.35	0,02	35.03	34.33	0.06	99.79	24.95	0.02	50.18	24.81	0.05	1.00

Таблица 1. Микрозондовые анализы образцов Cu-Ni руд норильских месторождений из фондов Минералогического музея им. А.Е. Ферсмана РАН

Примечание. Ан.: 1—6, 8 — образцы из месторождения Норильск-1; 7, 9, 10 — из месторождения Талнах. Инвентарные номера музейных образцов: ан. 1—3 — без номера, 4 — 68992, 5 — 69010, 6 — 9013, 7 — 76412, 8 — 59501, 9 — 69021, 10 — 69024. Фазы: pn — пентландит $Fe_4Ni_4(Co,Ni,Fe)_{\le 1}S_{\theta}$, ср — халькопирит $CuFeS_{2'}$, Ni-ср — никелистый халькопирит $(Cu,Ni)S_{2'}$ сb — кубанит $CuFe_2S_3$, po — пирротин $Fe_{1,x}S$.

формулы (Cu_{0.35}Ni_{0.57})_{0.92}(Fe_{1.10}Co_{0.01})_{1.11}S_{1.97} и (Cu_{0.57}Ni_{0.47})_{1.04}(Fe_{1.00}Co_{0.01})_{1.01}S_{1.96} соответственно. Никелистый халькопирит присутствует в незначительном количестве между зернами халькопирита и пентландита и почти не отличается от халькопирита по оптическим свойствам.

В качестве показателя состава исследуемых минералов и изменения содержания металлов в процессе кристаллизации Cu-Ni-Fe-S расплава выбрано отношение меди и никеля к железу и кобальту (Cu,Ni)/(Fe,Co) (табл. 1). Как видно из таблицы 1, содержание серы в исследованных минералах близко к соответствующим теоретическим содержаниям (в халькопирите и кубаните 50 ат.%, а в пентландите 47 ат.%). Вместе с тем, содержания примесей кобальта и никеля в халькопирите, кубаните и пирротине, а также меди в пентландите не превышают 1 ат.% и не влияют на количественные соотношения основных металлов. Составы исследованных образцов расположены в таблице 1 в последовательности уменьшения содержания железа в пентландите. поскольку содержание железа в других минералах для разных образцов близ-

Таблица 2. Микрозондовые анализы пентландита норильских месторождений

Nº	Фазы							Ат.%			(Ni,Cu)/	
	Fe	Co	S	Cu	Ni	Σ	Fe	Со	S	Cu	Ni	(Fe,Co)
1	40.70	0.90	31.50	0.10	25.80	99.00	33.65	0.71	45.29	0.06	20.29	0.59
2	37.66	0.03	32.90	0.09	28.30	98.98	30.88	0.00	47.00	0.06	22.06	0.72
3	36.78	0.36	33.14	1.92	27.66	99.86	29.94	0.29	47.01	1.35	21.41	0.75
4	36.49	0.33	33.21	1.32	28.40	99.75	29.71	0.25	47.09	0.95	22.00	0.77
5	35.89	0.00	33.27	0.08	29.95	99.19	29.29	0.00	47.36	0.06	23.29	0.80
6	35.54	0.50	33.50	0.85	29.43	99.82	28.87	0.39	47.40	0.61	22.74	0.80
7	33.11	1.07	32.34	0.03	31.48	98.03	27.49	0.84	46.78	0.02	24.87	0.88
8	31.60	1.00	32.5	0.00	34.6	99.90	25.88	0.76	46.36	0.00	27.00	1.01
9	30.60	1.40	32.00	0.00	35.10	99.10	25.12	1.71	45.76	0.00	27.41	1.02
10	31.03	0.59	33.30	0.08	35.10	100.10	25.22	0.45	47.14	0.60	27.13	1.06
11	29.70	1.70	33.00	0.00	35.5	99.70	24.24	1.29	46.88	0.00	27.59	1.08
12	30.19	0.50	32.88	0.04	35.37	98.98	24.82	0.39	47.09	0.03	27.67	1.10
13	29.76	0.51	33.08	0.07	35.63	99.05	24.43	0.39	47.30	0.05	27.83	1.12
14	30.00	0.60	32.40	0.00	37.60	100.60	24.47	0.47	45.94	0.00	29.12	1.16
15	27.86	0.36	32.46	0.29	37.05	98.02	23.18	0.29	47.00	0.24	29.29	1.25
16	27.12	0.35	32.75	0.13	38.70	99.05	22.35	0.29	0.47	0.11	30.29	1.34

Примечание. Ан: 4, 6, 7, 10, 12, 13 (выделены жирным шрифтом) выполненны в настоящей работе (табл. 1); 2, 3, 5, 15, 16— Спиридонов, Гриценко, 2008; 1, 8, 9, 11, 14— Генкин и др., 1981.

ки. Для образцов с никелистым халькопиритом представлены все установленные содержания никеля в халькопирите. Для остальных образцов показаны составы халькопирита с минимальным и максимальным содержанием никеля.

Согласно полученным результатам, значения (Cu,Ni)/(Fe,Co) исследованных минералов изменяются в пределах: 0.50-0.52 для кубанита, 0.96 – 1.02 для халькопирита, 0.77-0.88 и 1.06-1.12 для пентландита (табл. 1). Составы халькопирита и кубанита близки соответствующим стехиометрическим составам. Как видно из таблицы 1, (Cu,Ni)/(Fe,Co) для Ni-cp-1 из образца 2 (0.83) близко соответствующему значению обогащенного железом пентландита этого же образца (0.80), а для Ni-cp-2 из образца 7 (1.03) - значению обогащенного никелем пентландита (1.06, образец 8). Отношения (Cu,Ni)/ (Fe,Co) для никелистых халькопиритов являются промежуточными между интервалами соответствующих значений обогащенного железом и обогащенного никелем пентландита. Таким образом, Ni-cp-1 с (Cu,Ni)/ (Fe,Co) = 0.83 является промежуточной фазой между халькопиритом и обогащенным железом пентландитом, а Ni-cp-2 с (Cu,Ni)/ (Fe,Co) = 1.03 - между халькопиритом и обогащенным никелем пентландитом. Это свидетельствует об одновременной кристаллизации халькопирита и пентландита. Вместе с тем, в продуктах кристаллизации Cu-Fe-S расплавов, соответствующих составам норильских руд, близкие к 1.03 и 0.83 значения Cu/Fe, получены для халькопирита на границе его области гомогенности в ассоциации с талнахитом Cu₉Fe₈S₁₆ и изокубанитом CuFe₂S₃ (Кравченко, 2011; Кравченко и др., 2012).

Для понимания условий одновременной кристаллизации халькопирита и пентландита проведено сопоставление состава продуктов кристаллизации Cu-Fe-S расплавов, соответствующих составам руд норильских месторождений, и состава норильского пентландита.

На рисунке показаны фазовые ассоциации центральной части системы Cu-Fe-S, синтезированные методом охлаждения расплавов от 1100°С до комнатной температуры. Состав расплавов: 45 ат.% S, Cu/Fe = 1.44-0.69; 47 ат.% S, Cu/Fe = 1.30-0.63 и 50 ат.% S, Cu/Fe = 1.22-0.25. Фазовые ассоциации с изокубанитом (кубический fcc, в отличие от ромбического кубанита CuFe₂S₃) соответствуют составам норильских руд с ромбическим кубанитом, за исключением изокубанит-халькопиритовых твердых растворов (Дистлер и др., 1996).

Пентландит присутствует не во всех изученных нами природных образцах (табл. 1), но он характерен для всех норильских месторождений и обычно в них отличается более широким интервалом содержания никеля и

Рис. 1. Схема фазовых соотношений центральной части системы Cu-Fe-S при комнатной температуре (сплошные линии, Кравченко и gp., 2012) и область промежуточного твердого раствора (Cu,Fe)S при 600°C (iss, штриховые лини, Cabri, 1973). • – Исходные составы синтезированных образцов: 50 ат. % S, Cu/Fe = 1.22–0.25; 47 ат. % S, Cu/Fe = 1.30–0.63; 45 ат. % S, Cu/Fe 1.44–0.69. \Box – Стехиометрические составы: халькопирита CuFeS₂ (cp), пирита FeS₂ (py), троилита FeS, талнахита Cu₃Fe₃S₄₆ (tal), кубанита CuFe₂S₃ (cb), моихукита Cu₃Fe₉S₁₆ (mh) и хейкокита Cu₄Fe₅S₈ (hc). ро – пирротин Fe_{1-x}S, bn – борнит Cu₅FeS₄.

железа (табл. 2). В таблице 2 для сравнения представлены составы пентландита из норильских образцов, исследованных в настоящей работе, и составы пентландита по литературным данным (Генкин и др., 1981; Спиридонов, Гриценко, 2009). Как видно из таблицы 2, значения (Ni,Cu)/(Fe,Co) в пентландитах (0.59-1.34) соответствуют значениям (Ni,Cu)/(Fe,Co) образцов из области халькопиритового твердого раствора (Cu,Fe)S (iss, рис. 1), включая халькопирит. Составы халькопирита, кубанита и пирротина в минеральных ассоциациях, изученных в настоящей работе, соответствуют ассоциации кубанита с халькопиритом и обогащенным серой пирротином (табл. 1, обр. 2; cb + cp + po, puc. 1). Пентландит (Ni,Fe)₁₈S₁₆ по составу является никелистым аналогом моихукита Cu₉Fe₉S₁₆ и хейкокита (mh и hc, рис. 1). Исходя из этого, в отличие от Cu-Fe-S расплава, при кристаллизации Cu-Ni-Fe-S расплава вместо моихукита и хейкокита кристаллизуется пентландит. Таким образом, пентландит кристаллизуется одновременно с халькопиритом, кубанитом и пирротином.

Полученные результаты не согласуются с имеющимися в литературе данными об особенностях кристаллизации Cu-Fe-S и Cu-Fe-Ni-S расплавов, соответствующих составам норильских руд. Равновесная ассоциация халькопирит — кубанит — пирротин — (ср сb — ро, рис. 1) противоречит равновесной ассо-

циации борнит — моихукит — кубанит (bn — mh – сb). Условия образования ассоциации халькопирита с кубанитом и пирротином до настоящего времени мало изучены. Считается (Yund, Kullerud, 1966), что она образуется после кристаллизации халькопиритового (промежуточного) твердого раствора (iss, рис. 1). Это связано с тем, что большинство исследователей, в том числе авторы настоящей работы, изучали состав и условия образования халькопиритового твердого раствора с содержанием серы ≤50 ат.%. Проведенное нами исследование состава центральной части системы Cu-Fe-S при температуре 1100°С и давлении 50 кбар свидетельствует о возможности одновременной кристаллизации халькопирита, кубанита, пирротина и моихукита под давлением (Кравченко, Ненашева, 2015). Поскольку пентландит является никелистым аналогом моихукита, можно сделать вывод, что в системе Cu-Fe-Ni-S возможна одновременная кристаллизация халькопирита, кубанита, пирротина и пентландита под давлением. Это согласуется с данными о кубаните как о высокобарическом полиморфе соединения СиFe₂S₃ (Ненашева, Кравченко, 2014).

Заключение

Обнаруженные в норильских рудах в ассоциации с халькопиритом, кубанитом, пентландитом и пирротином новые фазы

(Cu_{0.35}Ni_{0.57})_{0.92}(Fe_{1.10}Co_{0.01})_{1.11}S_{1.97} и (Cu_{0.57}Ni_{0.47})_{1.04} (Fe_{1.00}Co_{0.01})_{1.01}S_{1.96} вместе с экспериментальными данными о составе продуктов кристаллизации Cu-Fe-S расплавов, соответствующих составам норильских руд (Кравченко, 2011; Кравченко и др., 2012), свидетельствуют об одновременной кристаллизации халькопирита CuFeS₂, пентландита (Cu,Fe)₉S₈, кубанита CuFeS₂ и пирротина Fe_{1-x}S из Cu-Ni-Fe-S расплава. Полученные результаты согласуются с данными о фазовом составе центральной части системы Cu-Fe-S при температуре 1100°С и давлении 50 кбар (Кравченко, Ненашева, 2015), что вместе с данными о кубаните как о минерале высокого давления (Ненашева, Кравченко, 2014) позволяет сделать вывод о кристаллизации норильских Cu-Ni руд в условиях повышенного давления.

Литература

- Генкин А.Д., Дистлер В.В., Гладышев Г.Д. и др. Сульфидные медно-никелевые руды Норильских месторождений. М.: Наука. 1981. 235 с.
- Дистлер В.В., Кулагов Э.А., Служеникин С.Ф., Лапутина И.П. Закаленные сульфидные твердые растворы в рудах Норильского месторождения // Геол. рудн. месторожд. 1996. Т. 38. № 1. С. 41 – 53.

- Кравченко Т.А. Экспериментальное исследование продуктов кристаллизации халькопиритового твердого раствора // Новые данные о минералах. 2011. Вып. 46. С. 86-92.
- Кравченко Т.А., Ненашева С.Н., Нигматулина Е.Н. Новые данные о составе фаз в центральной части системы Cu-Fe-S // Новые данные о минералах. **2012**. Вып. 47. С. 83-89.
- Кравченко Т.А., Ненашева С.Н. Экспериментальное исследование состава центральной части системы Cu-Fe-S при 1100°С и 50 кбар // Экспериментальная геохимия. 2015.
- Ненашева С.Н., Кравченко Т.А. Особенности состава изокубанита и полиморфные модификации соединения CuFe₂S₃ // Зап. BMO. **2014**. № 5. С. 84–97.
- Спиридонов Э.М., Гриценко Ю.Д. Эпигенетический низкоградный метаморфизм и Co-Ni-Sb-As минерализация в Норильском рудном поле. М.: Научный мир. 2009. 216 с.
- Cabri L.J. New data on phase relations in the Cu-Fe-S system // Econ. Geol. 1973. V. 68. P. 443-454.
- Yund R.A., Kullerud G. Thermal stability of assemblages in the Cu-Fe-S system // Jour. Petrol. 1966. V. 7. P. 454 – 488.

