НОВЫЕ ДАННЫЕ О МИНЕРАЛАХ ШИШИМСКОЙ КОПИ, ШИШИМСКИЕ ГОРЫ, ЮЖНЫЙ УРАЛ, РОССИЯ

С.Н. Ненашева, А.А. Агаханов

Минералогический музей им. А.Е. Ферсмана, РАН, Москва, nenashevasn@mail.ru, atali@mail.ru

В образцах скарна из Шишимской копи (Ю. Урал) установлены новые для нее минералы: таумасит Ca₃(SO₄)[Si(OH)₆](CO₃)•12H₂O, описанный на Урале только в Николае-Максимилиановской копи; известь CaO, известную на Гумешевском месторождении и в горелых отвалах Челябинского угольного бассейна; ферроакерманит Ca₂Fe[Si₂O₇], ранее не встречавшийся в природе, но известный как синтетический продукт. Кроме того, обнаружены новые минеральные фазы: фаза A Mg₁₀[(Si_{6.6}Al_{3.4})₁₀O₂₈]•8.6H₂O и фаза X с эмпирической формулой (Ca_{1.98}V_{0.02})_{2.00}(OH)_{0.86}(PO₄)_{0.86}(Si₂O₇)_{0.07}(SO₄)_{0.14}Cl_{0.03}. Ферроакерманит — железистый аналог акерманита Ca₂Mg[Si₂O₇] — минерала группы мелилита. Ранее минералы этой группы не встреча лись на Урале. Перечисленные новые для Шишимской копи минералы и минеральные фазы находятся в тесных срастаниях друг с другом и с уже известными на этой копи кальцитом, монтичеллитом, форстеритом, допсидом, хондродитом, перовскитом, кордиеритом, магнезиоферритом и другими минералами. В статье 4 таблицы, 6 рисунков, список литературы из 26 наименований.

Ключевые слова: Шишимская копь, таумасит, известь, ферроакерманит, новые минеральные фазы.

Шишимская копь расположена в 5 км к югу от деревни Медведёвка, в 1 км восточнее реки Ай, на правом берегу реки Бравиловки. Она была заложена в 1833 году горным инженером Н.П. Барботом-де-Марни с целью добычи коллекционного хлорита. Копь является самой южной из копей Назямских и Шишимских гор и располагается в массиве интенсивно амфиболитизированного и эпидотизированного средне-крупнозернистого габбро около его контакта с кварцитами (Мясников, 1954). Северная часть копи находится в мраморизованных известняках крупном ксенолите в габбро. Южнее известняки выклиниваются и сменяются контактовыми образованиями: пироксен-хлоритовыми, хлорит-серпентинитовыми, хлоритовыми, амфибол-хлоритовыми, амфиболовыми, гранат-хлоритовыми (лейхтенбергитовыми), гранат-везувиановыми и гранатовыми породами — плотными массивными или рассланцованными. По мнению В.А. Попова (Попов, 2011), в массиве габбро существует разломная структура, где происходило формирование скарновой минерализации. Скарны состоят из мелкозернистого желтого андрадита, голубоватого кальцита, кристаллов перовскита, серовато-коричневого монтичеллита, форстерита, бесцветного диопсида, зеленого клинохлора. Минералогия Шишимской копи активно изучалась, в том числе такими известными минералогами, как П.О. Евреинов, Г. Розе, П.В. Еремеев, Н.И. Кокшаров, И.В. Мушкетов, В.С. Мясников, В.А. Попов и многими другими. Здесь впервые П.О. Евреинов описал лейхтенбергит (Евреинов, 1842). В 2001 г. В.А. Поповым были описаны индивиды монтичеллита и кристаллы апатита, достигающие размеров 3—5 см по длинной оси (Попов, 2001). Среди минералов Шишимской копи встречаются: везувиан, ганит, гидраргилит (гиббсит), гранат (андрадит, гроссуляр, альмандин), пироксен (диопсид), амфиболы (актинолит, роговая обманка с размером кристаллов до 10—15 см), полевые шпаты (основной плагиоклаз, альбит), хлориты (лейхтенбергит), слюды (клинтонит), серпентин, турмалин, клиногумит, гематит, магнетит, титаномагнетит, перовскит, пирит, кальцит, тальк-апатит (продукты разложения апатита), хлорошпинель, хондродит, эллестадит, эпидот и другие минералы.

Нами изучались образцы из Шишимской копи, собранные во время полевой экскурсии, организованной для участников VI Всероссийского совещания, состоявшегося в Миассе 22—26 августа 2011 г.

Методы исследований

Химический состав минералов изучался на электронном микроанализаторе JCXA-733 Superprobe JEOL (система анализа INCA Energy Oxford, энергодисперсионный (Si-Li) детектор с тонким окном ATW-2, U = 20 кВ, I = 2 нА). В качестве эталонов использовались: SiK α – кварц, AlK α – альбит, CaK α – волластонит, MgK α – MgF₂, NaK α – жадеит, KK α – микроклин, MnK α – Mn₂SiO₄, FeK α – FeO, TiK α – TiO₂, BaK α – BaSO₄, SrL α – SrF₂.

Рентгенограммы получались на дифрактометре ДРОН-2 с графитовым монохроматором на СиКα-излучении, а также методом Дебая-Шерера в камере РКД-57.3, на рентгенов-

ю

Рис. 1. Схема геологического строения Шишимских, Чувашских и Назямских (Назминских) гор (по В.С. Мясникову, 1954).

ском аппарате УРС-50 на СиКα-излучении с Ni фильтром.

Результаты исследований

Были изучены образцы скарна, состоящего из голубоватого кальцита, желтого прозрачного мелкозернистого андрадита, светло-серого монтичеллита, бесцветного форстерита, удлиненных призматических кристаллов диопсида, красновато-бурых зерен хондродита, серых — кордиерита, мелких выделений темно-коричневого перовскита, магнезиоферрита. Кроме этих и других минеральных видов, известных на Шишимской копи, нами был обнаружен таумасит, ранее изученный только в образцах Николаево-Максимилиановской копи (Ю. Урал), близкой по геологической обстановке к Шишимской копи (рис. 1).

Таумасит — Са₃(SO₄)[Si(OH)₆](CO₃)•12H₂O впервые был обнаружен Гумэлиусом в 1874 г. в Швеции на месторождении Орескутан (Минералы, 1972, с. 363). Позднее этот минерал встречали в Норвегии, в Центральном Казахстане, в Узбекистане, в штате Юта (США) и в других месторождениях. Большая часть находок таумасита сделана в магнезиально-скарновых метасоматитах.

В Николае-Максимилиановской копи Южного Урала таумасит выполняет «*секу*-

щую трещину в мелкозернистой эпидото-диопсидовой породе на глубине 154 м» (Жабин, 1957). Описывая историю изучения таумасита, А.Г. Жабин сообщает, что он видел его и «в образцах везувиано-гранатовых пород с эллестадитом и монтичеллитом из Шишимской копи, полученных от В.С. Мясникова». Других сведений о таумасите из Шишимской копи нам неизвестно. А.Г. Жабин считает, что таумасит «гипогенный, генетически связанный с низкотемпературным гидротермальным процессом в самые последние стадии формирования зон скарновых пород» (Жабин, 1957).

Таумасит встречается в месторождениях различных типов. Описана находка таумасита в флогопит-диопсидовых метасоматитах Кургинского ультраосновного-щелочного массива на Кольском полуострве (Портнов, Солнцев, 1971). Там он завершает цеолитовую стадию минералообразования, приуроченную к зонам контакта сиенитов с ультрабазитами. Таумасит обрастает шабазит и развивается по тончайшим трещинкам в диопсид-флогопитовой породе, замещая пироксен и слюду.

Редки находки этого минерала в кимберлитовых трубках. В Якутии он обнаружен в трубках Новинка и Комсомольская, где отмечаются две формы выделения таумасита: в виде ветвящихся, часто пересекающихся прожилков мощностью от 1 до 4 мм и в виде желваков (Смирнов, Харькив, 1960). По мнению авторов, таумасит образовался в трубках за счет воздействия на ксенолиты известняков слабокислых гидротермальных растворов, поднимавшихся по трещинкам в кимберлите.

Обнаружен таумасит в пустотах измененных диабазов зоны вкрапленных медно-никелевых руд Талнахского месторождения (Рябов, Столповская, 1973), шаровых андезито-базальтовых лав Грузии (Степанов, Матросова, Быков, 1981). Интересна находка таумасита в необычном типе пород - природном портландцементе, сформированном под воздействием высокой температуры на битуминозный мел, мрамор, известняк — формация Хартрурим в Израиле (Gross, 1977). В месторождении Форт Портал в Уганде он в ассоциации с кальцитом заполняет пузыри в карбонатитовой лаве (Barker, Nixon, 1989). В рудах месторождения Цумеб, таумасит встречен в виде призматических кристаллов на реньерите (Gebhard, 1999).

Известны прозрачные бледно-желтые гексагональные кристаллы таумасита размером до 56 х 35 х 20 мм из Южной Африки

C

1 0 1 2 3 4 KM

(N'Chwaning Mine, Kuruman, Kalahari Manganese Field, Northern Cape Province). Состав таумасита из этого месторождения соответствует формуле Ca_{3 10}Si_{1.06}(OH)_{6.37}(SO₄)_{1.00}(CO₃)_{0.99} •11.6H₂O (Grubessi et al., 1986). В структуре таумасита установлены $[Ca_3Si(OH)_6(H_2O)_{12}]^{4+}$ колонки, выстроенные параллельно [001], соединенные группами СО₃ и SO₄ через водородные связи с молекулами H₂O (Jacobsen et al., 2003). Гексагональный кристалл из месторождения N'Chwaning Mine изучался методами монокристальной нейтронной дифракции и Рамановской спектроскопии (Gatta et al., 2012). В результате установлены основные структурные ячейки – СО₃ группы, SO₄ тетраэдры, Si(OH)₆ октаэдры и Ca(OH)₄(H₂O)₄ полиэдры, объединенные десятью различными водородными связями. По мнению авторов, таумасит является первично-вторичным минералом и индикатором сульфатного воздействия на порланд цемент.

Нами таумасит обнаружен в 2 образцах скарна из Шишимской копи. В одном образце он в виде снежно-белых призматических (до игольчатых) кристаллов заполняет трещину 7 х 0.5 см в скарне. В другом таумасит представлен мономинеральными прожилками параллельно-волокнистого строения мощностью 2-3 мм. Химические анализы таумасита (табл. 1) выполнены на материале, взятом из 4 участков образца, в котором он заполняет трещину. Как видно из таблицы, его состав достаточно постоянен. На рисунке 2 показана форма выделений таумасита, а на рисунке 3 его ассоциация с монтичеллитом и новой фазой, установленной на Шишимской копи и названной условно «фаза А». Средний состав таумасита по 8 анализам (табл. 1) пересчитывается на формулу, близкую к теоретической. Количество воды относительно теоретического состава несколько занижено, но литературные данные о содержании воды в таумасите разные. В справочнике (Минералы, 1972, с. 364) говорится, что таумасит - мине-

Таблица 1. Химический состав таумасита, мас.%

№ ан.	Ca	Mg	Si	S	Ο	Сумма			
1	26.91	H.o.	6.53	6.89	28.5	68.84			
2	23.70	0.22	4.99	6.00	24.26	59.16			
3	25.83	0.41	5.66	6.55	26.83	65.28			
4	25.33	H.o.	5.86	6.93	27.16	65.28			
5	23.83	H.o.	5.61	6.51	25.65	61.61			
6	25.73	H.o.	6.34	7.03	28.02	67.11			
7	26.64	H.o.	6.06	6.89	27.85	67.43			
8	27.81	H.o.	6.08	7.12	28.68	69.68			
Ср.	25.72	0.08	5.89	6.74	27.12	65.55			
Φ ормула в расчете на Ca+Si = 4									
(C	$(Ca_{3.01}Mg_{0.01})_{3.02}Si_{0.98}(OH)_6(SO_4)_{0.98}(CO_3)_{0.98}, \Delta = 0.4\%$								

Примечание. Н.о. — не обнаружено. Д, % — электронейтральность формулы. Недостаток суммы 34.45 % (дяя среднего состава) это вода. Расчет дает 11.86 H₂O. С учетом воды идеализированая формула: Ca₃Si(OH)₆[CO₃][SO₄]• 12H₂O. Аналитик А.А. Агаханов.

рал постоянного состава (небольшие примеси Mg, Fe, Al объясняются примесями других минералов), количество воды в формуле меняется от 14 до 15. Там же указывается, что, по Ф. Фогту, наиболее правильной является формула с 14.5 Н₂О. Таумасит из Николае-Максимилиановской копи (Жабин, 1957) содержит 15 H₂O. Рассчитанная формула таумасита из скважины 841В, пробуренной в задуговом океаническом бассейне Лау (юго-западная часть Тихого океана), содержит 11.25 молекулы H₂O (Schöps, Herzig, 1994). Воду в таумасите из Южной Африки (N'Chwaning mine) определили методом TGA (по потере веса при нагревании), и ее количество оказалось равным 11.6 молекулы в формуле. Для таумасита из Хатрурима (Израиль) приводится формула (Ca_{2.96}Mg_{0.08})Si_{1.01}(OH)_{6.00}(SO₄)_{0.96} (CO₃)_{0 93}•12.3H₂O. (Gross, 1977). Согласно структурным данным, приведенным выше, в таумасите должно быть 12 молекул воды.

Ренттенограмма таумасита из Шишимской копи (табл. 2) соответствует рентгено-

Рис. 2. Ассоциация таумасита с известью. 1, 2, 4, 5 — таумасит (ан. 3, 4, 5, 6, табл. 1); 3 — известь. Маркер 200 мкм.

Рис. 3. Ассоциация таумасита с фазой А, монтичеллитом, известью. 1, 3 – известь; 2 – фаза А (ан. 1, табл. 4); 4 – монтичеллит; 5 – таумасит (ан. 8, табл. 1). Маркер 300 мкм.

Таблица 2.	Межплоскостные р	расстояния	таумаси-
	та, Си <i>К</i> а		

Таумасит	из Шиш	имской	ASTM 25-128				
копи			(Bayliss <i>et al.</i> , 1986)				
№ п/п	Ι	d_{α}	Ι	d_{α}	hkl		
1	100	9.5965	100	9.56	100		
2	8	7.0604	2	7.04	101		
3	30	5.5316	40	5.51	110		
4	7	5.2147					
5	11	4.8877	5	4.88	111		
6	_	-	5	4.76	200		
7	22	4.580	6	4.56	102		
8	6	4.3522	4	4.34	201		
9	39	3.7937	16	3.78	112		
10	4	3.6331	1	3.61	210		
11	14	3.5267	6	3.51	202		
12	18	3.4202	20	3.41	211		
13	5	3.2686					
14	8	3.1938	16	3.18	300		
15	7	3.0359	< 1	3.04	301		
16	4	2.9405	< 1	2.935	113		
17	17	2.7225	2	2.755	220		
18	_	-	14	2.713	302		
19	2	2.6582	4	2.649	310		
20	6	2.6068	< 1	2.599	004		
21	6	2.5741	10	2.565	311		
22	19	2.5065	10	2.499	213		
23	3	2.3668	4	2.357	312		
24	3	2.2873	< 1	2.282	204		
25	3	2.1984	6	2.191	320		
26	13	2.1618					
27	7	2.1103	5	2.106	313		
28	_	-	2	2.086	410		
29	_	-	4	2.045	411		
30	3	2.0260	3	2.019	322		
31	3	1.9409	3	1.934	412		
32	4	1.9148	10	1.911	500		
33	4	1.8113	3	1.809	331		
34	_	-	3	1.778	421		
35	2	1.7394	3	1.733	332		
36	_	-	2	1.692	511		
37	3	1.6338	4	1.626	415		
38	-	_	< 1	1.570	430		
39	3	1.5458	1	1.551	431		
40	2	1.4740	1	1.467	522		

Примечание. ASTM 25—128 — рентгенограмма таумасита из Северной Ирландии (Knill, Young, 1960).

грамме таумасита из County Down (Северная Ирландия), представленной в справочнике (Knill, Young, 1960; Bayliss *et al.*, 1986).

Ферроакерманит $Ca_2Fe^{2+}[Si_2O_7]$ образует мелкозернистые агрегаты желтовато-коричневого цвета со стеклянным блеском в ассоциации с диопсидом, монтичеллитом, форстеритом, фазой А (рис. 4, 5) или с диопсидом, форстеритом, монтичеллитом и фазой Х (рис. 6). Его химический состав показан в таблице 3. Пересчет микрозондовых анализов дает формулу (среднее из 12 анализов) $(Ca_{1.87}Mg_{0.02})_{1.89}(Fe_{1.11}Ti_{0.06})_{1.17}[(Si_{1.85}Al_{0.09})_{1.94}O_{6.96}],$ то есть $Ca_2(Fe,Ti)[(Si,Al)_2O_7]$, или Ca_2Fe^2 [Si₂O₇]. Это ферроакерманит – железистый аналог акерманита Ca₂Mg[Si₂O₇], минерала группы мелилита. Кроме акерманита, к этой группе относятся: геленит Ca₂Al[AlSiO₇], мелилит (Ca,Na)₂(Al,Mg)[(Si,Al)₂O₇], алюмоакерманит (Ca,Na)₂(Al,Mq,Fe²⁺)[Si₂O₇]. Они образуются на контакте известняков и основных пород (габбро, пироксен-андезитов, диабазов). В минералах группы мелилита широко проявлено замещение MqSi на AlAl, а также вхождение Fe²⁺ и Fe³⁺ (Минералы, 1972). Акерманит образует серию твердых растворов с геленитом, однако крайние члены этой серии крайне редки. Минерал, близкий по составу к теоретическому составу акерманита, обнаружен только в выбросах вулкана Везувий, самого древнего из трех его вложенных конусов – Монте-Соммы. Ферроакерманит Са₂Fe [Si₂O₇] известен лишь как синтетический продукт, полученный из стекла соответствующего состава при температуре 1325°С (Минералы, 1972). Ниже этой температуры он не устойчив. Гидротермальным методом ферроакерманит получен при 798°С и давлении 4060 кГ/см² (Минералы, 1972). По данным Фойта с соавторами (Foit et al., 1987), твердые растворы существуют и между геленитом Ca₂Al[AlSiO₇] и ферригеленитом Ca₂Fe³⁺ [AlSiO₇]. Ими в глиноподобной горной породе (buchite), возникшей в результате близповерхностного горения угольного пласта недалеко от Буффало (Buffalo, штат Вайоминг, США), обнаружены пироксены и мелилит, необычно богатые Al и Fe³⁺. Авторы указывают на широкое замещение в мелилите ${
m Fe}^{3+}{
m Al}^{3+}\,=\,{
m Si}^{4+}{
m R}^{2+}$, где ${
m R}^{2+}$ двухвалентный катион. Состав продуктов замещения варьирует в ряду геленит – ферригеленит. Последний считается гипотетическим конечным членом мелилитовой группы, возможно, ферроакерманит еще один конечный член этой группы. Ферроакерманит $Ca_2Fe^{2+}[Si_2O_7] \rightarrow$ акерманит $Ca_2Mg[Si_2O_7] \rightarrow$ геленит Ca_2Al $[AlSiO_7]$ → ферригеленит Ca₂Fe³⁺ $[AlSiO_7]$.

BSE BSE BSE

Рис. 4. Тесные срастания ферроакерманита с фазой А, монтичеллитом и форстеритом. 1 — ферроакерманит (ан. 1, табл. 3); 2, 3, 4 — монтичеллит; 5, 6 — фостерит; 7 — фаза А (ан. 2, табл. 4). Маркер 300 мкм. Рис. 5. Взаимоотношения между ферроакерманитом и фазой А. 1, 4 — ферроакерманит (ан. 4, 5, табл. 3); 2, 3 — фаза А (ан.

3, 4, табл. 4). Маркер 300 мкм.

Рис. 6. Ассоциация: ферроакерманит, фаза X, диопсид, форстерит, монтичеллит. 1 — диопсид; 2, 6 — ферроакерманит (ан. 2, 3, табл. 3); 3 — форстерит; 4 — монтичеллит; 5 — фаза X. Маркер 300 мкм.

№ ан.	Ca	Mg	Fe	Si	Al	Ti	0	Сумма	Δ , %
1	24.15	H.o.	19.53	16.31	0.99	0.69	35.15	96.82	0.0
2	23.74	0.18	20.27	16.65	0.47	0.79	35.31	97.41	0.07
3	23.82	0.26	19.88	16.59	0.44	0.78	35.23	97.17*	0.2
4	24.01	H.o.	19.52	16.74	1.29	H.o.	35.40	96.96	0.4
5	23.52	0.23	19.20	16.13	0.95	1.02	34.94	95.98	0.07
6	23.62	0.47	19.25	16.24	0.52	1.02	34.89	96.01	0.0
7	23.85	0.30	19.16	16.19	0.71	1.53	35.30	97.04	0.0
8	23.87	H.o.	19.16	16.24	0.78	1.02	34.90	95.97	0.2
9	23.40	0.57	19.39	16.55	0.66	1.41	35.66	97.64	0.0
10	23.21	0.27	21.71	16.82	0.05	H.o.	34.87	96.94	0.1
11	24.1	H.o.	18.81	16.68	1.64	0.36	35.71	97.3	0.0
12	23.8	0.09	19.14	15.99	0.71	1.18	34.67	95.58	0.2
Ср. из 12 ан.	23.76	0.20	19.58	16.43	0.77	0.82	35.17	96.74	0.1

Таблица 3. Химический состав ферроакерманита, мас.%

Пересчет анализов на сумму атомов = 12

1	$Ca_{1.91}(Fe_{1.10}Ti_{0.05})_{1.15}[(Si_{1.84}Al_{0.12})_{1.96}O_{6.97}]$
2	$(Ca_{1.86}Mg_{0.02})_{1.88}(Fe_{1.14}Ti_{0.05})_{1.19}[(Si_{1.87}Al_{0.05})_{1.92}O_{6.94}]$
3	$(Ca_{1.87}Mg_{0.03})_{1.90}(Fe_{1.12}Ti_{0.05}Mn_{0.01})_{1.18}[(Si_{1.86}Al_{0.05})_{1.91}O_{6.94}]$
4	$Ca_{1.88}Fe_{1.10}[(Si_{1.87}Al_{0.15})_{2.02}O_{6.97}]$
5	$(Ca_{1.87}Mg_{0.03})_{1.90}(Fe_{1.09}Ti_{0.07})_{1.16}[(Si_{1.83}Al_{0.11})_{1.94}O_{6.95}]$
6	$(Ca_{1.87}Mg_{0.06})_{1.93}(Fe_{1.10}Ti_{0.07})_{1.17}[(Si_{1.84}Al_{0.06})_{1.90}O_{6.94}]$
7	$(Ca_{1.88}Mg_{0.04})_{1.92}(Fe_{1.08}Ti_{0.10})_{1.18}[(Si_{1.82}Al_{0.08})_{1.90}O_{6.96}]$
8	$Ca_{1.90}(Fe_{1.09}Ti_{0.07})_{1.16}[(Si_{1.84}Al_{0.09})_{1.93}O_{6.96}]$
9	$(Ca_{1.83}Mg_{0.07})_{1.90}(Fe_{1.09}Ti_{0.09})_{1.18}[(Si_{1.84}Al_{0.08})_{1.92}O_{6.97}]$
10	$(Ca_{1.83}Mg_{0.04})_{1.87}Fe_{1.23}[(Si_{1.90}Al_{0.01})_{1.91}O_{6.90}]$
11	$Ca_{1.89}(Fe_{1.05}Ti_{0.02})_{1.07}[(Si_{1.87}Al_{0.19})_{2.06}O_{7.00}]$
12	$(Ca_{1.91}Mg_{0.01})_{1.92}(Fe_{1.10}Ti_{0.08})_{1.18}[(Si_{1.83}Al_{0.08})_{1.91}O_{6.98}]$
Cp.	$(Ca_{1.87}Mg_{0.02})_{1.89}(Fe_{1.11}Ti_{0.06})_{1.17}[(Si_{1.85}Al_{0.09})_{1.94}O_{6.96}]$

Примечание. * — В том числе 0.18 мас. % Мп, что составляет 0.01 а.ф. Идеализированная формула Ca₂(Fe, Ti)][(Si, Al)₂O₇], или Ca₂Fe[Si₂O₇], соответствует железистому аналогу акерманита — Ca₂Mg[Si₂O₇]. Д, % — электронейтральность формулы. Аналитик А.А. Агаханов.

Таблица 4.	Химический	состав с	вазы А.	мас.%
raomaga n	2 kinnin loonini	cocrub c	puspiig	

№ ан.	Mg	Fe	Si	Al	0	Сумма	Δ , %			
1	19.89	0.79	16.20	7.67	38.60	83.15	0.0			
2	20.32	0.93	15.56	8.54	38.95	84.29	0.1			
3	20.90	0.91	15.64	7.78	38.75	83.98	0.1			
4	21.05	0.84	15.81	7.60	38.87	84.17	0.0			
5	20.71	0.84	15.70	5.84	39.36	85.15	0.2			
6	21.65	1.25	16.82	7.08	40.07	86.89	0.0			
Cp.	20.75	0.93	15.96	7.42	39.10	84.60	0.1			
	Перес	чет ана	лизов н	а сумм	іу атомо	в = 24				
1	(Mg _{4.84}	$(Mg_{4.84}Fe_{0.08})_{4.92}[(Si_{3.40}Al_{1.68})_{5.08}O_{14.24}]$								
2	(Mg _{4.86}	$(Mg_{4.86}Fe_{0.10})_{4.96}[(Si_{3.22}Al_{1.84})_{5.06}O_{14.14}]$								
3	(Mg _{5.00}	$(Mg_{5.00}Fe_{0.10})_{5.10}[(Si_{3.24}Al_{1.68})_{4.92}O_{14.08}]$								
4	(Mg _{5.02}	$(Mg_{5.02}Fe_{0.08})_{5.10}[(Si_{3.26}Al_{1.64})_{4.90}O_{14.08}]$								
5	(Mg _{4.88}	$(Mg_{4.88}Fe_{0.08})_{4.96}[(Si_{3.20}Al_{1.82})_{5.02}O_{14.12}]$								
6	(Mg _{5.02}	$(Mg_{5.02}Fe_{0.12})_{5.14}[(Si_{3.38}Al_{1.48})_{4.86}O_{14.12}]$								
Cp.	(Mg _{4.94}	Fe _{0.09}) _{5.0}	₃ [(Si _{3.28} A	J _{1.69}) _{4.97}	O _{14.13}].					
	Формула электронейтральная.									
_		-								

Примечание. Недостаток суммы 15.40% (для среднего состава) — вода. Расчет дает 4.3 H₂O. С учетом воды формула: Mg₅[(Si,Al)₅O₁₄]•4.3H₂O. Д, % — электронейтральность формулы. Аналитик А.А. Агаханов.

Следует отметить, что на Урале минералов группы мелилита до сих пор не встречали.

Известь СаО встречена в ассоциации с таумаситом, монтичеллитом, фазой А (рис. 2, 3). Минерал белого цвета, мелкозернистый. Размер зерен ~ 30-60 мкм. Состав минерала отвечает теоретической формуле СаО. Из четырех микрозондовых анализов, только в одном обнаружена незначительная примесь Мд (0.51 мас.%). В природе известь встречается редко. Известно 6 находок: 2 — на Урале — Гумешевское месторождение, Ср. Урал (Задов и др., 2005) и в горелых отвалах г. Копейска, Челябинская область, Ю. Урал (Чесноков, Щербакова, 1991); 2 — в штате Аризона, США (Graeme, 1981; Anthony et al., 1995); 2 в Италии, в известняках, заключенных в лавах Везувия (Ciriotte, Möckel, 2003; Russo, Punzo, 2004).

Фаза А обнаружена в виде желтых или желто-оранжевых зерен со стеклянным блеском в ассоциации с форстеритом, монтичеллитом, ферроакерманитом (рис. 4, 5). Химический состав фазы А достаточно постоянный (табл. 4). Эмпирическая формула (средняя из 6 анализов) (Mg_{4.94}Fe_{0.09})_{5.03}[(Si_{3.28} Al_{1.69})_{4.97} O_{14.13}] электронейтральная. Сумма 84.60%, недостаток суммы 15.40%, скорее всего, вода. Расчет дает 4.3 молекулы воды. Формула, вероятно, (Mg_{4.94}Fe_{0.09})_{5.03}[(Si_{3.28}Al_{1.69})_{4.97}O_{14.13}]• 4.3H₂O, или Mg₁₀[(Si_{6.6}Al_{3.4})₁₀O₂₈]•8.6H₂O. Фаза X установлена в ассоциации с ферроакерманитом, диопсидом, форстеритом, монтичелитом (рис. 5, 6). Микрозондовый анализ (мас.%): Са 38.78, Р 12.97, V 0.30, Si 1.96, S 2.14, Cl 0.51, O 37.9, сумма 94.55. Эмпирическая формула ($Ca_{1.98}V_{0.02}$)_{2.00} $P_{0.86}Si_{0.14}Sl_{0.14}Cl_{0.03}O_{4.86}$ при пересчете на Ca + P + V + Si = 3, или ($Ca_{1.98}V_{0.02}$)_{2.00}[PO₄]_{0.86}[Si₂O₇]_{0.07}[SO₄]_{0.14}Cl_{0.03}. Для электронейтральности формула будет ($Ca_{1.98}V_{0.02}$)_{2.00} (OH), тогда формула будет ($Ca_{1.98}V_{0.02}$)_{2.00} (OH)_{0.86}(Si₂O₇)_{0.07}(SO₄)_{0.14}Cl_{0.03}.

К сожалению, ферроакерманит, фаза A и фаза X обнаружены только в тесных срастаниях друг с другом и с другими минералами, что затрудняет их дальнейшее изучение.

Монтичеллит в Шишимской копи впервые был обнаружен П.В. Еремеевым (Еремеев, 1899). В.А. Попов описал таблитчатые кристаллы монтичеллита длиной до 3 см (Попов, 2001). Монтичеллит находится в тесных срастаниях с таумаситом и известью (рис. 3), ферроакерманитом, фазой А, форстеритом (рис. 4), а также с ферроакерманитом, фазой Х, форстеритом (рис. 6). По результатам микрозондового анализа видно, что состав монтичеллита постоянен. Эмпирическая формула (Ca_{1.00}Mg_{0.94}Fe_{0.06})_{2.00}[Si_{1.00}O_{4.00}] (средняя из 10 анализов) соответствует теоретической формуле CaMq[SiO₄].

Диопсид в скарне Шишимской копи представлен серовато-зеленоватыми мелкими удлиненными пластинками (рис. 6). Ассоциирует с форстеритом, монтичеллитом, ферроакерманитом. Химический состав отвечает теоретической формуле CaMg[Si₂O₆], примеси не установлены.

Выводы

1. При исследовании образцов из Шишимской копи обнаружен ферроакерманит Са₂Fe[Si₂O₇] — железистый аналог акерманита, ранее не встречавшийся в природе, но известный как синтетический продукт. Акерманит — минерал группы мелилита (Ca, Na)₂ (Al,Mg)[(Si,Al)₂O₇], к которой относятся еще геленит Ca₂Al[(Al,Si)₂O₇] и ферригеленит. Последний считается гипотетическим конечным членом мелилитовой группы. Вероятно, ферроакерманит еще один конечный член этой группы: ферроакерманит Ca₂Fe²⁺[Si₂O₇] \rightarrow акерманит Ca₂Mg[Si₂O₇] \rightarrow геленит Ca₂Al $[AlSiO_7] \rightarrow \phi eppure herror Ca_2Fe^{3+}[AlSiO_7].$ Кроме того, обнаружение ферроакерманита является первой находкой минерала группы мелилита на Урале.

2. Впервые в скарнах Шишимской копи установлены новые для нее минералы: таумасит, состав которого отвечает теоретической формуле $Ca_3(SO_4)[Si(OH)_6](CO_3)\bullet 12H_2O$, известь CaO, а также новые минеральные фазы, названные условно «фаза A» и «фаза X», эмпирические формулы которых можно представить как $Mg_{10}[(Si_{6.6}Al_{3.4})_{10}O_{28}]\bullet 8.6H_2O$ и $Ca_{1.98}V_{0.02})_{2.00}(OH)_{0.86}(PO_4)_{0.86}(Si_2O_7)_{0.07}(SO_4)_{0.14}Cl_{0.03}$ соответственно.

Литература

- Евреинов П.О. Новый минерал лейхтенбергит // Горный журнал. **1842**. Т. IV. С. 236 – 242.
- Жабин А.Г. Таумасит из района Николае-Максимилиановской копи на Южном Урале // Тр. МГРИ. **1957**. Вып. 10. С. 134—141.
- Задов А.Е., Грабежев А.И., Чуканов Н.В., Прибавкин С.В., Жухлистов А.П., Суставов С.Г. Пломбиерит, тоберморит, известь и другие минералы из скарнов Гумешевского месторождения (Ср. Урал) // Вестник Уральского отделения РМО. Екатеринбург: ИГГ УрО РАН. 2005. С. 79-85.
- Минералы. М.: «Наука». **1972**. Т. З. Вып 1. 882 с.
- Мясников В.С. Минеральные копи Шишимских и Назямских гор // Минералогия Урала. Т. 1. М.-Л.: АН СССР. **1954**. С. 250 – 268.
- Попов В.А. Кристаллы монтичеллита из Шишимской копи на Южном Урале // Урал. геол. журн. **2001**. №5 (23). С. 140–143.
- Попов В.А. Апатит-монтичеллитовые карбонат-пегматиты Шишимской копи на Южном Урале // Минералогия Урала-2011 / Сб. науч. статей / Мат. VI Всер. совещ. Миасс: УрО РАН. 2011. С. 82–85.
- Портнов А.М., Солнцев Б.П. О таумасите с Кольского полуострова // Новые данные о минералах СССР. Тр. Минерал. музея АН СССР. М.: Наука. **1971**. Вып. 20. С. 217-220.
- Рябов В.В., Столповская В.Н. Таумасит из Талнахского рудного узла (Северо-Запад Сибирской платформы) // Геология и геофизика. **1973**. №11. С. 111—115.
- Смирнов Г.И., Харькив А.Д. Таумасит в кимберлитах Якутии // Геология и геофизика. **1960**. №12. С. 116—118.
- Степанов В.И., Матросова Т.И., Быкова А.В. О генезисе таумасита из различных типов месторождений // Новые данные о минералах. **1981**. Вып. 29. С. 107 – 110.
- Чесноков Б.В., Щербакова Е.П. Минералогия горелых отвалов Челябинского угольного бассейна (опыт минералогии техногенеза). М.: Наука. **1991**. 152 с.

- Anthony J.W., Bideaux R.A., Bladh K.W., Nichols M.C. Handbook of Mineralogy. Tuscon, Arisona: Mineral Data Publishing. 1990. V. II. P. 790.
- Anthony J.W., Williams S.A., Bideaux R.A., Grant R.W. Mineralogy of Arizona / 3rd edition. Tuscon, Arisona: University of Arizona Press. **1995**. 277 p.
- Barker D.S., Nixon P.H. High-Ca, low-alkali carbonatite volcanism at Fort Portal, Uganda // Contributions to Mineralogy and Petrology. 1989. V. 103. P. 166 – 177.
- Bayliss P., Erd D.C., Mrose M.E., Sabina A.P., Smith D.K. Mineral Powder Diffraction File. Data Book. Swarthmore, USA: International Centre for Diffraction Data. **1986**. P. 1169.
- Foit F.F.Jr, Hooper R.L., Rosenberg P.E. An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming // Am. Mineral. 1987. V. 72. No. 1, 2. P. 137 – 147.
- Gatta G.D., Mcintyre G.J., Swanson J.G., Jacobsen S.D. Minerals in cement chemistry: A single-crystal neutron diffraction and Raman spectroscopic study of thaumasite Ca₃Si (OH)₆(CO₃)(SO₄)•12H₂O // Am. Mineral. 2012. V. 97. No. 12. P. 1060 1069.
- Graeme R.W. Famous mineral localities: Bisbee, Arizona // Mineral. Rec. **1981**. V. 12. No 5. P. 258-319.
- Gross S. The mineralogy of the Hatrurim Formation, Israel // Geol. Sur. Israel. Bull. **1977**. V. 70. P. 37 – 38.
- Grubessi O., Mottana A., Paris E. Thaumasite from the Tschwinning [N'Chwaning] mine, South Africa // Tschermaks mineralogische und petrographische Mitteilungen. **1986**. V. 35. No. 3. P. 149–156.
- Jacobsen S.D., Smyth J.R., Swope R.J. Thermal expansion of hydrated six-coordinate silicon in thaumasite, Ca₃Si(OH)₆(CO₃)(SO₄)•12H₂O // Physics and Chemistry of Minerals. **2003**. V. 30. P. 321–329.
- Knill D.C., Young B.R. Thaumasite from Co. Down, Northern Ireland // Mineral. Mag. 1960. V. 32. No. 248. P. 416 – 418.
- Neuvonen K.J. Thermochemical investigation of the äkermanite-gehlenite series // Bull. Comm. geol. Finlande. **1952**. V. 26. No. 158. P. 5-50.
- Russo M., Punzo I. I Minerali del Somma-Vesuvio. Cremona: AMI (Italiana Micromineralogical Association). **2004**. 320 р. (на ит. яз.).
- Schöps D., Herzig P.M. Thaumasite in Lau basin basaltic andezite, hole 841B // Proceeding of the Ocean Drilling Program. Scientific Results / Ed. Hawkins J., Parson L., Allan J. et al. 1994. V. 135. P. 647–651.